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1 Introduction

The advantage arising from the use of phase cycles can be seen by comparing the COSY
and DQF COSY spectrum for a two-spin system.

COSY DQF COSY

Figure 1: Comparison of COSY spectrum (left) and DQF COSY spectrum (right).

The COSY spectrum shows a double dispersion lineshape for the diagonal-peak multi-
plets. Such peaks are rather broad and dominate the spectrum. Thus, such a lineshape
is undesirable for high resolution spectroscopy.

In the DQF COSY spectrum the double dispersion lineshape is not present. Both cross-
peak multiplets and diagonal-peak multiplets have an absorption mode lineshape. This
results in less overlap in realistic spectra with many resonances.

The DQF COSY spectrum can be obtained by filtering all the observed signals through
a state of a certain coherence . (For the DQF COSY experiment it is a state of double-
quantum coherence ; hence the name Double-Quantum Filtered COSY.)

In general, the selection of specific coherences is often desired in NMR experiments.
This selection can be achieved by a method called phase cycling .

Gaining a deeper insight into the working principles of phase cycling is the purpose of
this tutorial. The D iscrete Representation of OPerators for Spin systems (DROPS)
via SpinDrops will be used to illustrate the idea of these experiments.1

1A. Garon, R. Zeier and S. J. Glaser, Phys. Rev. A 91, 042122 (2015)
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2 Coherence Order p

2.1 Raising and Lowering Operators in Place of Îx and Îy Operators

The product operators Îx and Îy correspond to transverse magnetization.

Îx Îy

Figure 2: Îx operator (left) and Îy operator (right) in DROPS.

For the classification of coherence orders these operators will be expressed in terms of the
so-called raising operator Î+ and lowering operator Î−. By definition, the coherence
order of p(Î+)=+1 and p(Î−)=−1.

Î+ Î−

Figure 3: Î+ operator (left) and Î− operator (right) in DROPS.
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The definition of Î+ is

Îx i·̂Iy Î+

+ =

Figure 4: Visual representation for the definition of the raising operator: Îx + îIy = Î+

Note the colors of the operators Îx and i·̂Iy and the distribution of the colors in the
raising operator Î+.

Similarly, the definition of Î− is

Îx −i·̂Iy Î−

+ =

Figure 5: Visual representation for the definition of the lowering operator: Îx − îIy = Î−

A clear distinction between raising operator Î+ and lowering operator Î− can be made.
For the raising operator, the rainbow color gradient (red, yellow, green, blue) is counter-
clockwise. For the lowering operator, on the other hand, this color gradient is clockwise.

In addition to the representation in DROPS, Figure 4 and 5 illustrate the representation
of operators in terms of vectors (red and yellow arrows). Linear cartesian spin operators
(e.g. Îx) can be represented as three-dimensional real vectors. These vectors are repre-
sented by red arrows within SpinDrops. Imaginary vectors (e.g. i·̂Iy) are represented by
yellow arrows.
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According to these definitions, the operators for the transverse magnetization Îx and Îy

can be expressed in terms of the raising operator Î+ and lowering operators Î−.

1
2 Î+ 1

2 Î− Îx

+ =

Figure 6: Visual representation for Îx in terms of Î+ and Î−: 1
2 (̂I+

+ Î−) = Îx

1
2i Î

+ − 1
2i Î

− Îy

+ =

Figure 7: Visual representation for Îy in terms of Î+ and Î−: 1
2i (̂I

+ − Î−) = Îy

Note that the red and green areas accumulate. The yellow and blue areas, on the other
hand, cancel each other. This is due to the fact that they are of opposite sign. Remember
that the color code is as follows:

Figure 8: SpinDrops color code

red ≡ ei0
◦

= 1

yellow ≡ ei90◦ = i

green ≡ ei180◦ = −1

blue ≡ ei270◦ = −i
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Exercise:

Verify the expressions for the transverse magnetizations in terms of raising and lowering
operator. The separation of an operator into its part of different coherences can be
achieved very easily within SpinDrops.

Choose:

• Spin System ≫ 1-Spin

• Initial State ≫ I1x (or I1y)

• Options ≫ Separation ≫ Coh. Order p
Make sure the experiment timeline is at t=0.

After you have chosen Coh. Order p you will see the separation of the operator. The
part of the state (̂Ix or Îy) that corresponds to the positive coherence order p=+1 is
illustrated above the xy-plane. The negative part of the coherence order, p=−1, can be
seen underneath this plane.

In order to return to the usual representation, choose:

• Options ≫ Separation ≫ Standard
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2.2 Definition of Coherence Order p

Section 2.1 introduced the raising operator Î+ and the lowering operator Î−. It has been
stated that the raising operator has a coherence order of p(Î+)=+1, and the lowering
operator has a coherence order of p(Î−)=−1. Now it’s time to discuss what the coherence
order actually is.

The coherence order p is based on what happens to a particular state p̂
(e.g. an operator or product operator) when a z-rotation through an angle Φ is applied.

If the operator only acquires a phase of (−p·Φ), the operator is said to have
coherence order p.2

This definition can be expressed in the following symbolic representation:

p̂(p) rotate by Φ about z-axis−−−−−−−−−−−−−−−→ p̂(p) · e−i·p·Φ

(Note: Since the operator Îz is not affected by any rotation about the z-axis, we see
immediately that Îz corresponds to a coherence order of p=0.)

2based on J. Keeler, Understanding NMR Spectroscopy, 2nd ed. (Wiley,Chichester, 2010).
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In order to get a better understanding of coherence orders and the corresponding defi-
nition, let’s have a look at a concrete example.

A good starting point is to take the raising operator Î+ as our initial state. It has been
stated that this operator corresponds to a coherence order of p=+1. Now that we know
how the coherence order is defined, we can try to verify this statement. For that reason,
we let this state evolve under a z-rotation through an angle Φ.

First we will use the definition of the raising operator Î+ to split it into the transverse
magnetizations Îx and Îy.

Figure 9: Evolution of Î+ under z-rotation of angle Φ:

a) Splitting of Î+ into its Îx- and Îy-components
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We can evolve the transverse magnetizations Îx and Îy in the usual manner. For the
visualization we will use an angle Φ of 45◦.
(However, any angle would result in the same value for the coherence order p)

rotate by Φ−−−−−−−−→
about z-axis

rotate by Φ−−−−−−−−→
about z-axis

Figure 10: Evolution of Î+ under z-rotation of angle Φ:

a) Splitting of Î+ into its Îx- and Îy-components
b) Evolution of the Îx- and Îy-components

As you might have expected, the transverse magnetizations will simply rotate by an
angle Φ (here 45◦).
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Merging the evolved transverse magnetizations results in the initial raising operator Î+.
However, under the z-rotation of angle Φ, the raising operator has acquired a phase.
The raising operators before and after the rotation about the z-axis are illustrated in
Figure 11.

rotate by Φ−−−−−−−−→
about z-axis

rotate by Φ−−−−−−−−→
about z-axis

Figure 11: Evolution of Î+ under z-rotation of angle Φ:

a) Splitting of Î+ into its Îx- and Îy-components
b) Evolution of the Îx- and Îy-components
c) Recombine the Îx- and Îy-components

You can test the effect of a z-rotation of angle Φ on the raising operator Î+ on your own.
Therefore choose:

• Spin System ≫ 1-Spin

• Initial State ≫ I1(+)

• Pulse Sequence ≫ Rotation ≫ z Rotation
and select one of the predefined angles.
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Alternatively, you can use a delay time to realize an arbitrary rotation about the z-axis.
However, you have to take care of the relation between your delay time and the offset
frequency of your spin. Following the procedure below leads to a rotation by an eighth
of a full turn, i.e. an angle of 45◦.

• Spin System ≫ 1-Spin

• Spin System ≫ Parameters
and set the offset frequency ν1 to 1 Hz.

• Initial State ≫ I1(+)

• Options ≫ Preferences...
and make sure that Advanced Sequence Editor is not selected.

• Pulse Sequence ≫ Edit Sequences...
and set only one entry with a delay time of 125 ms ( = 1

8 s ).

For any angle Φ the raising operator acquires a phase of (−p · Φ)=(− [+1]·Φ). This can
be seen by fixing a certain point of the raising operator before the rotation, e.g. a point
located in the red area. During the rotation, the color at this point changes continuously
from red≡ ei0

◦
(at Φ=0◦) to blue≡ ei270◦ = e−i90◦ (at Φ=90◦) to green≡ e±i180◦ (at

Φ=180◦) and so on (dependent on the choice of the rotational angle Φ).

Using the definition of the coherence order p

p̂(p) rotate by Φ about z-axis−−−−−−−−−−−−−−−→ p̂(p) · e−i·p·Φ

we have shown that the raising operator Î+ corresponds to a coherence order p of +1.
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Mathematical development:

Î
+

= Îx + îIy
ΦÎz−−→ Îx cos Φ + Îy sin Φ + i(̂Iy cos Φ − Îx sin Φ) (1)

=(̂Ix + îIy) cos Φ − i(̂Ix + îIy) sin Φ (2)

=(̂Ix + îIy)(cos Φ − i sin Φ) (3)

=Î
+
e−iΦ (4)

In (1) we use the definition of the raising operator

Î
+

= Îx + îIy

and let these two terms evolve under z-rotation through an angle Φ according to the
theory of angular momentum operators. Closed form solutions for the evolution of
angular momentum operators within experiments can be found in NMR-textbooks3.

To go from (3) to (4), again the definition of the raising operator Î+ is used, as well as
Euler’s formula

cos Φ − i sin Φ = e−iΦ

3e.g. J. Keeler, Understanding NMR Spectroscopy, 2nd ed. (Wiley,Chichester, 2010)
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Exercise:

What do you expect happens to the lowering operator Î− under a z-rotation through an
angle of 90◦?

Î−

rotate by 90◦−−−−−−−−→
about z-axis

answer
options

Figure 12: Operator Î− (left) and four answer options (right) for its representation after
a z-rotation through an angle of 90◦.

Check if your expectation is correct. In order to do this, choose:

• Spin System ≫ 1-Spin

• Initial State ≫ I1(-)

• Pulse Sequence ≫ Rotation ≫ z Rotation ≫ 90 ◦(z)
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Alternatively, you can simulate a delay of time 1
4ν , with ν being the offset frequency of

your spin. For example:

• Spin System ≫ 1-Spin

• Spin System ≫ Parameters
and set ν1=1 Hz.

• Initial State ≫ I1(-)

• Options ≫ Preferences...
and make sure that Advanced Sequence Editor is not selected.

• Pulse Sequence ≫ Edit Sequence...
and set only one entry with a delay time of 250 ms.

Press the play button and compare the result with your expectation.
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Explanation:

Since the lowering operator Î− corresponds to a coherence order of −1, the rotation
through an angle Φ=90◦ leads to a phase of (−p ·Φ)=(− [−1]·90◦)= 90◦. Using the same
approach as for the raising operator, we fix a point located in the red area of the lowering
operator before the rotation has been carried out. Due to the coherence order of −1, this
point will correspond to a yellow area after the rotation of Φ=90◦ has been carried out.
Thus, in contrast to the raising operator the change in color is in the opposite direction.

In addition, we can also find the solution very easily by using the following approach. The
rotation of 90◦ results in a phase of (−p · Φ)=(− [−1]·90◦) for the lowering operator Î−.
However, a phase of (− [−1]·90◦) =̂ ei90◦ = ei·

π
2 = i. This means, we simply have to

multiply our initial state Î− with a value of i to find the correct solution. In order to do
this, we refer to the color coding shown below:

Figure 13: SpinDrops color code

The multiplication will have the following effect:

red ≡ 1
multiply with i−−−−−−−−−−→ 1 · i = i ≡ yellow

yellow ≡ i multiply with i−−−−−−−−−−→ i · i = −1 ≡ green

green ≡ −1
multiply with i−−−−−−−−−−→ −1 · i = −i ≡ blue

blue ≡ −i
multiply with i−−−−−−−−−−→ −i · i = 1 ≡ red
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2.3 Zero- and Multiple-Quantum Coherences

So far we have seen that the operators Îx and Îy can be split into parts with coherence or-
der p=+1 and p=−1. Such operators are said to represent single-quantum coherence .
Beyond those also multiple-quantum coherences (with e.g. p=±2) or zero-quantum
coherences (with p=0) can appear.

For example, create 2Î1xÎ2x as the initial state, and view its coherence orders:

• Spin System ≫ 2-Spin

• Initial State ≫ Edit Initial State...
and then create the state 2 Î1xÎ2x.

Dependent on your settings under
Options ≫ Preferences...
there are two ways:

1. Edit Operator by String inactive:
Create the following state.

2. Edit Operator by String active:
Enter 2I1xI2x as your Product Op. Expression
and confirm with OK .

• Options ≫ Separation ≫ Coh. Order p

Exercise:

What are the coherence orders that constitute the state 2Î1xÎ2x? Do you have an idea
why these coherence orders appear?

Hint: Use the definition of Îix (i=1,2) in terms of the raising and lowering operator and
multiply the terms.
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Mathematical development:

2Î1xÎ2x = 2

[
1

2
(̂I

+

1 + Î
−
1 )

1

2
(̂I

+

2 + Î
−
2 )

]
(1)

=
1

2
[̂I

+

1 Î
+

2 + Î
−
1 Î

−
2 + Î

+

1 Î
−
2 + Î

−
1 Î

+

2 ] (2)

p = +2 p = −2 p = 0 p = 0

In (1) we replace the Îix (i=1,2) operators by using the following definition

Îix =
1

2
(̂I

+

i + Î
−
i )

The operator Î+
1 corresponds to coherence order p=+1. The same holds true for Î+

2 . Let’s
now focus on the term Î+

1 Î+
2 . In order to determine the coherence order of this term, the

effect of a z-rotation of angle Φ is examined.

Î
+

1 Î
+

2
ΦÎz−−→ (̂I

+

1 e
−i·1·Φ) · (̂I+

2 e
−i·1·Φ)

=Î
+

1 Î
+

2 e
−i·(1+1)·Φ

=Î
+

1 Î
+

2 e
−i·2·Φ

The coherence order of Î+
1 Î+

2 is determined according to its definition in subsection 2.2.
The coherence order for the term Î+

1 Î+
2 is then simply the sum of the coherence orders

of the individual operators. Thus, the coherence order for Î+
1 Î+

2 is p=+2. Similarly, the
coherence order of Î−1 Î−2 is p=−2.
It follows that the remaining two terms Î+

1 Î−2 and Î−1 Î+
2 both have a coherence order of

p=0.
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The representation with separated coherence orders shows exactly the result from above.
One operator at p=+2 (second line above the xy-plane), one operator at p=−2 (second
line below the xy-plane) and a combination of two operators, each with p=0 (at the line
located in the xy-plane). Thus, we can see that the product operator 2Î1xÎ2x consists of
parts with double-quantum coherence and zero-quantum coherence.

2Î1xÎ2x

Figure 14: Coherence-order-separated representation of 2Î1xÎ2x.
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Exercise:

We have already seen how a state with p=+1 evolves under a z-rotation of an angle Φ.
Now we focus on a state with p=+2. Figure 15 illustrates the Î+

1 Î+
2 operator.

Try to predict the phase acquired by this operator resulting from a z-rotation through
an angle of 45◦. Focus on a red area of the operator prior to the z-rotation. Which color
corresponds to this area after the z-rotation? What is the difference compared to the
operator Î+ with p=+1?

Î+
1 Î+

2

Figure 15: Operator Î+
1 Î+

2
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Explanation:

The Î+
1 Î+

2 operator corresponds to a coherence order of +2. The rotation through an angle
of Φ=45◦ is illustrated in Figure 16 and leads to a phase of (−p ·Φ)=(− [+2]·45◦)=−90◦,
which is equivalent to e−i90◦=e−i·

π
2 =−i. This means, we have to multiply our initial state

with a value of −i to find the correct solution. Since a red area corresponds to a value
of 1, the z-rotation changes this area according to 1·(−i)=−i. Thus, after the z-rotation
this area is blue. This is in contrast to the z-rotation through an angle of 45◦ with initial
state Î+. Figure 11 shows that the area after the rotation corresponds to a color halfway
between red and blue. Thus, the change in phase resulting from a z-rotation through an
angle Φ is twice as fast for Î+

1 Î+
2 with p=+2 compared to Î+ with p=+1.

Î+
1 Î+

2
−i·̂I+

1 Î+
2

rotate by 45◦−−−−−−−−→
about z-axis

Figure 16: Operator Î+
1 Î+

2 before (left) and after z-rotation through an angle of
45◦ (right).

You can test the z-rotation with initial state Î+
1 Î+

2 on your own. The following procedure
leads to a rotation through an angle of 45◦.

• Spin System ≫ 2-Spin

• Spin System ≫ Parameters
and set the offset frequencies ν1 and ν2 to 1 Hz,
and the coupling J12 to zero.

• Initial State ≫ MQ(+/-ops.) ≫ 2Q(I1,I2) ≫ I1(+)*I2(+)

• Options ≫ Preferences...
and make sure that Advanced Sequence Editor is not selected.

• Pulse Sequence ≫ Edit Sequences...
and set only one entry with a delay time of 125 ms ( = 1

8 s ).
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2.4 Coherence Orders and Pulses

Experiments consist of pulses and delays. Coherence orders can be changed by pulses,
while they remain constant during a delay.

In order to see the effect of a pulse, let’s apply a 90◦x pulse to the operator Î+
1 Î+

2 . Therefore,
choose:

• Spin System ≫ 2-Spin

• Initial State ≫ MQ(+/-ops.) ≫ 2Q(I1,I2) ≫ I1(+)*I2(+)

• Options ≫ Separation ≫ Coh. Order p

• Pulse Sequence ≫ Rotation ≫ 90 ◦ Pulse ≫ 90 ◦(x)
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The initial operator Î+
1 Î+

2 corresponds to p=+2. Thus, prior to applying the pulse we
see only this coherence order. When we press the play button to apply the 90◦x pulse
additional coherences start to appear at the expense of our initial coherence order. In
our case, the 90◦x pulse leads to a state which has contributions from all coherence orders
between +2 and −2.
The initial and final states are shown below.

90◦x pulse−−−−−−−−−→

Figure 17: Operator Î+
1 Î+

2 (left) and the corresponding state after a 90◦x pulse.
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3 The Principles of Phase Cycling

By using phase cycles it is possible to select certain coherence pathways and reject
the others. We will now explore such a selection process in more detail.

When selecting coherence pathways via phase cycling not only one but several exper-
iments will be carried out. In order to avoid confusion, we will call the individual
experiments sub-experiments (or scans). They have to be distinguished from the
term experiment which will be used to represent the sum of all the sub-experiments.

3.1 The Summation Process

In order to become more familiar with the summation process, let’s have a look at some
examples.

Imagine you have performed two sub-experiments and you want to combine them in
order to obtain the final outcome. This situation is illustrated below for Îz operators
with different scaling factors.

0.5·̂Iz 0.5·̂Iz Îz

+ =

Figure 18: Results of two sub-experiments and their sum.
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There is no restriction to the number of sub-experiments. The illustration below shows
the summation process using the results of four sub-experiments.

Îz −0.5·̂Iz Îz −0.5·̂Iz Îz

+ + + =

Figure 19: Results of four sub-experiments and their sum.

Within a phase cycling procedure the focus is on the individual coherence orders. We
have already seen that SpinDrops allows for a representation with separated coherence
orders. Summing sub-experiments in the coherence-separated representation does not
differ from the example just given. However, we have to do the summation process for
one coherence order after another. The following exercise explores summation.
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Exercise:

The illustration in Figure 20 shows the results of two sub-experiments. For each of them,
coherence orders p=+1 (top), p=0 (centre) and p=−1 (bottom) are shown. Try to predict
the outcome when summing the results of the two sub-experiments.
(Hint: Focus on the color distribution. Areas with opposite sign will cancel each other)

+ = ?

Figure 20: Coherence-separated representation for the results of two sub-experiments.
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Explanation:

The summation process within the coherence-separated representation is illustrated be-
low. In order to find the final outcome, we will start with coherence order p=+1. In
both sub-experiments this coherence order is populated via Î+, so the sum corresponds
to 2·̂I+. Coherence order p=0, on the other hand, is not populated in both cases. Thus,
we can not expect to find a populated coherence order p=0 when adding up the partial
results. Coherence order p=−1 is of greater interest. Here we have Î− for the first case
and −Î− for the second case. Therefore, the summation process zeros p=−1. This exam-
ple demonstrates that although coherence orders are populated they may cancel each
other when summing up the results of the sub-experiments.

Î+
+ Î− Î+ − Î− 2·̂I+

+ =

Figure 21: Coherence-separated representation for the results of two sub-experiments
and their sum.
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3.2 The Phase of Coherences

Within a phase cycling procedure the applied pulse sequence in each sub-experiment is
exactly the same, but for specific pulses there will be a shift of ∆Φ in the phase. Shifting
the phase of a pulse means that its rotation axis is rotated in the xy-plane, e.g. a 90◦x
pulse shifted by ∆Φ=90◦ is a 90◦y pulse.

In order to become more familiar with such experiments, let’s focus on a concrete ex-
ample. Our initial state will be Î+

1 Î+
2 (coherence order p0=+2) and 90◦ pulses will be

applied to that state. We will have four sub-experiments with a single 90◦x, 90◦y, 90◦−x

or 90◦−y pulse, respectively. These pulses will lead to a population of various coherence
orders (denoted with p1).

Prepare the system as follows:

• Spin System ≫ 2-Spin

• Initial State ≫ MQ(+/-ops.) ≫ 2Q(I1,I2) ≫ I1(+)*I2(+)

• Options ≫ Separation ≫ Coh. Order p

• Pulse Sequence ≫ Tutorials ≫ Phase Cycling ≫ 1.Coherence Phase
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Selecting the pulse sequence 1.Coherence Phase will cause a change in the screen
layout within SpinDrops. On the left side you will find the individual sub-experiments.
This example has four of them. From top to bottom the pulse in each sub-experiment
is shifted by 90◦. On the right side is the sum of all the sub-experiments.

sub-experiments experiment

Figure 22: SpinDrops layout for phase cycling experiments; 1.Coherence Phase at the

beginning of the experiment with initial state Î+
1 Î+

2 .

In general it holds true that if the pulse causes a change in coherence, shifting its phase
will result in a shift of the phase of the resulting coherence. We will now focus on the
results of the individual sub-experiments and verify this statement. Let’s start with
coherence order p1=+2 which is the same as our initial coherence order. As can be seen
from Figure 23, shifting pulse phases has no effect on the phase of the final state if initial
and final coherence order are the same.

90◦x 90◦y 90◦−x 90◦−y

p=+2

Figure 23: Experiment 1.Coherence Phase with initial state Î+
1 Î+

2 , coherence order p1=+2
after a 90◦x, 90◦y, 90◦−x and 90◦−y pulse.
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Let’s now focus on the pathway from our initial coherence order p0=+2 to the coherence
order p1=+1. The results are shown in Figure 24.

90◦x 90◦y 90◦−x 90◦−y

p=+1

Figure 24: As Figure 23, but for coherence order p1=+1.

When looking at the phase of the individual coherences, we can see that a shift of the
phase of the pulse by 90◦ results in a shift of the phase of the resulting coherence by 90◦

(i.e. multiplication by ei90◦= i). Remember that the color code is as follows:

Figure 25: SpinDrops color code
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Now let’s see what happens for a transition from p0=+2 to p1=0. The results from our
four sub-experiments at coherence order p1=0 are illustrated in Figure 26.

90◦x 90◦y 90◦−x 90◦−y

p=0

Figure 26: As Figure 23, but for coherence order p1=0.

When looking at the phase of the individual coherences, we can see that a shift of the
phase of the pulse by 90◦ results in a shift of the phase of the coherence by 180◦ (i.e.
multiplication by ei180◦= −1).
Consequently, the coherence also acquires a phase shift. However, the phase acquired
by the coherence with p=0 is different compared to the coherence with p=+1.
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Phase cycling is based on the property that transitions from an initial coherence p0 to
different final coherences p1 result in different phase shifts of the final coherence.

This behavior can be used to distinguish between different coherence pathways and is a
key ingredient for the selection of certain coherences.

Comparing the acquired phase shifts from the example indicates a systematic behavior.
In fact, shifting the phase of a pulse that causes a change in coherence order from
p0 to p1 results in a phase of (−−−∆p∆Φ) of the resulting coherence . ∆p (=p1−p0)
is the change of the coherence order and ∆Φ is the change of the phase of the applied
pulse.

Exercise:

Having this knowledge about the acquired phase, let’s come back to our example system
Î+
1 Î+

2 (coherence order p0=+2). Focus now on the coherence p1=−1 after a 90◦x pulse. It
is shown below:

Figure 27: Experiment 1.Coherence Phase with initial state Î+
1 Î+

2 , coherence order p1=−1
after a 90◦x pulse.

Try to predict the acquired phase and the color distribution of this coherence after a 90◦y
pulse, i.e. after shifting the initial 90◦x pulse by ∆Φ=90◦. After that do the same for a
90◦−x and 90◦−y pulse.
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Mathematical development:

The change in coherence for a transition from p0=+2 to p1=−1 is

∆p = p1−p0 = −1 − (+2) = −3

The shift of the phase of the pulse (relative to the 90◦x pulse) is

90◦x pulse → 90◦y pulse ⇒∆Φ = 90◦

90◦x pulse → 90◦−x pulse ⇒∆Φ = 180◦

90◦x pulse → 90◦−y pulse ⇒∆Φ = 270◦

The coherence acquires a phase of (−∆p∆Φ). Thus

∆Φ = 90◦ ⇒ (−(−3) · 90◦) = 270◦
map to 360◦-range−−−−−−−−−−−−→ 270◦ ⇒ ei270◦ = −i

∆Φ = 180◦ ⇒ (−(−3) · 180◦) = 540◦
map to 360◦-range−−−−−−−−−−−−→ 180◦ ⇒ ei180◦ = −1

∆Φ = 270◦ ⇒ (−(−3) · 270◦) = 810◦
map to 360◦-range−−−−−−−−−−−−→ 90◦ ⇒ ei90◦ = i

Now you have to remember the color wheel and multiply each ”color” (i.e. phase factor
of the coherence) with the calculated phase factors from above. This will lead to the
following result:

90◦x 90◦y 90◦−x 90◦−y

p=−1

Figure 28: As Figure 23, but for coherence order p1=−1.
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The pathway from our initial coherence order p0=+2 to the coherence order p1=−2
corresponds to ∆p=−4. Since the pulse applied in the individual sub-experiments is
shifted by a multiple of 90◦, the phase of the coherence is shifted by a multiple of 360◦.
The results are shown below:

90◦x 90◦y 90◦−x 90◦−y

p=−2

Figure 29: As Figure 23, but for coherence order p1=−2.

To consider the final result of our experiment, we sum the results from our sub-experiments.
This means our focus is now on the right side of the SpinDrops screen. This part of the
screen is illustrated in the Figure 30.
The results at coherence orders p=+2 and p=−2 are the same at each sub-experiment.
Thus, for the final outcome of our experiment we will have an accumulation at these
coherence orders.
The situation is different for the other coherence orders. The graphic reveals vanishing
results for each of them. However, it is not immediately obvious why the sum of the
sub-experiments leads to this result.
In the next part of the tutorial we will have a closer look of these situations.

Figure 30: Final result of the experiment 1.Coherence Phase with initial state Î+
1 Î+

2 .
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3.3 Coherence Pathway Selection via Phase Cycling

3.3.1 Selection of a Single Pathway

So far, we know that different pathways of the coherence result in different phases of the
coherence. However, it is still not clear how this will help us to select a certain coherence
pathway and reject others.

Let’s stick with our example from above and the transition from p0=+2 to p1=−1. We
now want to combine the results from our four sub-experiments (with 90◦x, 90◦y, 90◦−x and
90◦−y pulse), in such a way that individual coherences will add constructively.
Simply adding the four final coherences creates a vanishing result. This is due to the fact
that the phase of our coherence after a 90◦x pulse is exactly the opposite of our coherence
after a 90◦−x pulse. The same is true for a 90◦y and a 90◦−y pulse. The summation for the
pairs that cancel each other are illustrated below.

90◦x 90◦−x Sum

p=−1 + =

Figure 31: Experiment 1.Coherence Phase with initial state Î+
1 Î+

2 , coherence order p1=−1
after the 90◦x and the 90◦−x pulse and the sum of these terms.

90◦y 90◦−y Sum

p=−1 + =

Figure 32: Experiment 1.Coherence Phase with initial state Î+
1 Î+

2 , coherence order p1=−1
after the 90◦y and the 90◦−y pulse and the sum of these terms.
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Thus, if we want the results to add up, we need to modify the phases of the individual
coherences before the summation. This modification is performed by using the so-called
receiver phase . In order to understand the principle of phase cycling, it is sufficient
for us to know that the receiver phase is under our control and we can use it to cause a
phase shift to the results of a certain sub-experiment.

We will now take advantage of the receiver phase to modify the phase of the coherences
after the individual sub-experiments (i.e. after the 90◦x, 90◦y, 90◦−x and 90◦−y pulses). In
order to have a situation in which the individual coherences for p1=−1 will add up, we
use the following receiver phases for the individual sub-experiments:

90◦x pulse ⇒ receiver phase = 0◦ ≡ multiplication by ei0
◦

= 1

90◦y pulse ⇒ receiver phase = −270◦ ≡ multiplication by ei(−270◦) = i

90◦−x pulse ⇒ receiver phase = −180◦ ≡ multiplication by ei(−180◦) = −1

90◦−y pulse ⇒ receiver phase = −90◦ ≡ multiplication by ei(−90◦) = −i
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You can prepare the experiment including these receiver phases on your own by selecting:

• Spin System ≫ 2-Spin

• Initial State ≫ MQ(+/-ops.) ≫ 2Q(I1,I2) ≫ I1(+)*I2(+)

• Options ≫ Separation ≫ Coh. Order p

• Pulse Sequence ≫ Tutorial ≫ Phase Cycling ≫ 2.Pathway Selection

Note the difference with respect to the 1.Coherence Phase experiment: the receiver
phases are illustrated as partially transparent element at the and of each pulse sequence.
The color indicates the value for the receiver phase using the usual color coding.

1.Coherence Phase
receiver
phase

2.Pathway Selection
receiver
phase

1 1

1 i

1 −1

1 −i

Figure 33: Illustration of receiver phases within SpinDrops.

It is important to point out that for real experiments the sub-experiments are carried
our first and the receiver phase is applied afterwards. Therefore, the left side of the
screen within SpinDrops will show you exactly the same for the 1.Coherence Phase and
the 2.Pathway Selection experiment. However, in order to obtain the sum of the sub-
experiments on the right side, the receiver phase is applied, altering the outcome of the
overall experiment.

In order to grasp the effect of phase cycling procedures, it is useful to take the
receiver phase into account during individual sub-experiments. This can be achieved
within SpinDrops. Choose:

• Options ≫ Preferences...
and enable Apply RX Phase.

Having the possibility to see the effect of the receiver phase during sub-experiments is a
very helpful feature that will be used for the rest of the tutorial.

36



Let’s now come back to the 2.Pathway Selection experiment. Using the receiver phases
of the 2.Pathway Selection experiment, we simply turn back the phase shifts gained by
the use of different pulse phases with respect to the transition from coherence p0=+2
to coherence p1=−1. Thus, the coherences with p1=−1 will add up. The graphic below
compares the situation obtained with the 1.Coherence Phase (without additional receiver
phase) with the results from the 2.Pathway Selection experiment.

applied
pulse

1.Coherence Phase
p=−1

2.Pathway Selection
p=−1

90◦x
multiply with−−−−−−−−−−−−→

receiver phase = 1

90◦y
multiply with−−−−−−−−−−−−→

receiver phase = i

90◦−x
multiply with−−−−−−−−−−−−−→

receiver phase = −1

90◦−y
multiply with−−−−−−−−−−−−−→

receiver phase = −i

Sum

Figure 34: Experiments 1.Coherence Phase (left) and 2.Pathway Selection (right) with

initial state Î+
1 Î+

2 , coherence order p1=−1 after a 90◦x, 90◦y, 90◦−x and 90◦−y pulse

and the sum of the individual terms.
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As you can see on the right side of the SpinDrops screen, all the other coherences in
this example will cancel. This can also be obtained from Figure 35. It shows the entire
outcome from our four sub-experiments modified by the corresponding receiver phase.
When adding the results, areas of opposite sign will cancel each other. Consequently, we
have vanishing results for all coherence orders, except for p=−1. Thus, we have achieved
our goal of selecting a certain coherence pathway.

90◦x·ei(0
◦) 90◦y·ei(−270◦) 90◦−x·ei(−180◦) 90◦−y·ei(−90◦)

p=+2

p=+1

p=0

p=−1

p=−2

Figure 35: Experiment 2.Pathway Selection with initial state Î+
1 Î+

2 , coherence represen-
tation after a 90◦x, 90◦y, 90◦−x and 90◦−y pulse. The results of the four sub-

experiments are modified by a receiver phase to select the transition to p1=−1.
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3.3.2 Selection of Multiple Pathways

In general, however, not all other coherences must cancel out while only one coherence
order remains. What remains is a discrete set of coherence orders.

In the example above our goal was to select the coherence transitions from p0=+2 to
p1=−1 (i.e. ∆p=−3). To achieve this goal, we decided to apply a four-step phase cycle,
i.e. we performed four experiments and applied a 90◦x, a 90◦y, a 90◦−x and a 90◦−y pulse,
respectively. Thus, in each experiment we shifted the phase of the pulse by 90◦.
The general formula describing a given ∆p and a shift of the phase of the pulse by 90◦

result in the coherence acquiring a phase of

(−∆p∆Φ) ⇒ e−i∆p∆Φ ≡ e−i∆p·
π
2 . 4

Equivalent to our selected pathway, all coherences that acquire the same phase will also
add up. For a four-step cycle, this case appears for coherence transitions that differ
from our selected one (e.g. from ∆p=−3) by a multiple of four , e.g.:

(−(∆p+4)∆Φ)⇒ e−i(∆p+4)∆Φ ≡ e−i(∆p+4)π
2

= e−i∆p·
π
2 ei4

π
2 = e−i∆p·

π
2 ei2π

= e−i∆p·
π
2 · 1 = e−i∆p·

π
2

And more generally speaking:

For a N-step cycle the increment of the phase of the pulse corresponds to 360◦

N = 2π
N .

The selection of a particular coherence transition with ∆p (achieved by values for the
receiver phase that compensate for the phase shift of the selected coherence order) leads
to the selection of a discrete set with coherence transitions ∆p+nN (n ∈ N).

However, we do not have to care about all of these coherence transitions. The reason
for this is that high orders of multiple-quantum coherences become very unlikely. The
generation of multiple-quantum coherence of order m would require a significant coupling
of a spin to m−1 other spins. In practice it is usually sufficient to take triple-quantum
as the maximum coherence order into consideration.

4according to J. Keeler, Understanding NMR Spectroscopy, 2nd ed. (Wiley,Chichester, 2010).
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As an example for the selection of multiple coherence pathways, let’s stick with our Î+
1 Î+

2

operator and the transition from p0=+2 to p1=−1 (i.e. ∆p=−3), but with a two-step
cycle (i.e. N=2). In order to prepare the experiment, choose:

• Spin System ≫ 2-Spin

• Initial State ≫ MQ(+/-ops.) ≫ 2Q(I1,I2) ≫ I1(+)*I2(+)

• Options ≫ Separation ≫ Coh. Order p

• Pulse Sequence ≫ Tutorial ≫ Phase Cycling ≫ 3.Multiple Pathways

Since we now know that we actually do not select a single transition ∆p, but an entire
set with ∆p+nN (n ∈ N), we can assume that coherences other than p1=−1 will also
remain after the phase cycling procedure.

The coherence p1=+1 will also remain as a consequence of the coherence transition with
∆p =−3+1·2 = −1 (≡ ∆p+nN).

Actually, we have already performed the necessary sub-experiments in the previous sec-
tion. We simply have to take the results obtained for the 90◦x and the 90◦−x pulse (already
multiplied with the corresponding receiver phases, [0◦, −180◦]). However, we now only
add up these two results instead of the four results obtained earlier.
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The 3.Multiple Pathways experiment shows exactly this situation. The summation pro-
cess is illustrated below. Indeed, only the coherence pathways with ∆p=−1 (from p0=+2
to p1=+1) and ∆p=−3 (from p0=+2 to p1=−1) will add up and are therefore ”selected”.
All other coherences that belong to different coherence pathways, however, will be can-
celled due to the phase cycling procedure.

90◦x·ei(0
◦) 90◦−x·ei(−180◦) Sum

p=+2 + =

p=+1 + =

p=0 + =

p=−1 + =

p=−2 + =

Figure 36: Experiment 3.Multiple Pathways with initial state Î+
1 Î+

2 , coherence represen-
tation after a 90◦x and 90◦−x pulse. The results of the two sub-experiments are
modified by the receiver phases, [0◦, −180◦], to select the transitions to p1=+1
and −1.
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3.3.3 Coherence Transfer Pathways

By using phase cycles we can select specific coherences and can then consider only those
terms. Underneath graphics for pulse sequences you often find illustrations that show
the desired coherences at each stage of the experiment. These illustrations are called
Coherence Transfer Pathways (CTP). Examples for such CTPs are shown below:

Pulse sequence (top) and
CTP with a single pathway from

coherence order p0=+2 to p1=−1 (bottom)

Pulse sequence (top) and
CTP with multiple pathways (bottom)
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When looking at the CTP of pulse sequences, you will find that the last pulse usually
leads to a coherence transfer to p=−1. The reason for this is that only p=−1 is observable.
Thus, it is the only coherence of interest for us at the end of an experiment.
What we ultimately observe are the x- and y-magnetizations (both correspond to p=±1).
However, those are usually combined into a complex time-domain signal

S(t) ∝ [Mx(t) + iMy(t)]

and it can be shown that (due to the way of combining the signals) this is equivalent to
detecting only the coherence order p=−1.
Other coherence orders will not be observed, so we can neglect them.
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3.4 Combining Phase Cycles

In pulse sequences we have usually more than just one single pulse. And we may want
to select different coherence pathways at different stages of our pulse sequence.

Consider the following example:

Figure 37: Pulse sequence (top) with two pulses (denoted with I and II)
and CTP with a selected coherence transition ∆p

I
=+1 at pulse I

and ∆p
II
=−2 at pulse II (bottom).

In this example, the coherence transition with ∆p
I
=+1 is desired for the first pulse.

In order to achieve this transition, we can use a phase cycling procedure with a four-
step cycle. (Remember, using a two-step cycle would additionally select the coherence
transition with ∆p

I
=−1.)

For the second pulse the desired coherence transition is ∆p
II
=−2. The question is, what

is required to carry out such a selection? The answer is simple: We can use again a
phase cycling procedure with a four-step cycle. However, the two applied phase cycling
procedures have to be independent of one another.
For us, this means primarily one thing: more sub-experiments! For the 2 phase
cycles, each performed by using a cycle with 4 steps, we have to perform 4 2 sub-
experiments. That is because for every phase shift of pulse II (in order to select ∆p

II
=−2)

we have to perform 4 sub-experiments to select ∆p
I
=+1 at pulse I.

(Note: Since only coherence order p=−1 is detected and other coherences will not be
observed, there is actually no need to select the final transition to p=−1. This will be
discussed in more detail later on. Nevertheless, phase cycling procedures will be applied
to both pulses since the aim of this subsection is to understand the combination of phase
cycles.)
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In order to see how the combination of phase cycles works, we look at a concrete example.
Therefore, choose the following settings:

• Spin System ≫ 2-Spin

• Spin System ≫ Parameters
and set the first offset frequency ν1 to 1 Hz
and the coupling J12 to 1 Hz.
(offset frequency ν2 is irrelevant for our experiment)

• Initial State ≫ I1z

• Options ≫ Separation ≫ Coh. Order p

• Pulse Sequence ≫ Tutorial ≫ Phase Cycling ≫ 4.Combine Cycles
Note: The delay time between the pulses in the sub-experiments is 1

2·J12 = 500ms.
It will be used for subsequent calculations.

Pressing the play button reveals that the first pulse creates coherence orders p1=±1 and
the second pulse leads to a population of different coherence orders for the individual
sub-experiments. We will now use the combination of phase cycles to track a specific
coherence pathway. Therefore, we will perform 16 sub-experiments. In order to avoid
confusion arising from the rather larger number of sub-experiments, it is useful to split
them in groups of four and treat them separately. Each group (denoted with A, B, C,
D) comprises four sub-experiments.
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Group A:

The first four sub-experiments select the coherence transition with ∆p
I
=+1. Therefore,

we shift the phase of the first pulse by 90◦ at each of the four sub-experiments. We can
say the phase of the first pulse goes through the sequence [0◦, 90◦, 180◦, 270◦]. The
pulse in the first sub-experiment will be a 90◦x pulse. The phase shifts in the sequence
are relative to this pulse.

The receiver phase for the sub-experiments consists of contributions that account for
shifting the phase of the two pulses (I and II). These contributions will be denoted
with RX

I
for pulse I and RX

II
for pulse II. Hence, the receiver phase corresponds

to RX
I

+ RX
II
. For the transition ∆p

I
=+1 our coherence acquires a phase (−∆p

I
∆Φ),

i.e. [0◦, −90◦, −180◦, −270◦]. To select the transition ∆p
I
=+1 with pulse I, the con-

tribution RX
I

is [0◦, 90◦, 180◦, 270◦]. Pulse II is not shifted within group A sub-
experiments. Thus, the contribution RX

II
is [0◦, 0◦, 0◦, 0◦] and the receiver phase

is [0◦ + 0◦, 90◦ + 0◦, 180◦ + 0◦, 270◦ + 0◦]=[0◦, 90◦, 180◦, 270◦]. The receiver phase for
group A sub-experiments is therefore equivalent to the contributions due to RX

I
. Using

these values for the receiver phase ensures that coherences with p1=+1 will add up, while
those with p1=−1 will cancel.
Figure 38 illustrates this behaviour by showing the individual states immediately after
the first pulse, modified by the corresponding receiver phase. Remember, for real exper-
iments, the receiver phase is actually applied to the individual sub-experiments before
summation. However, having Apply RX Phase active within SpinDrops shows the
effect of the receiver phase in the sub-experiments. In this way, the images of Figure
38 can be reproduced within SpinDrops by setting the time immediately after the first
pulse. The four sub-experiments of group A correspond the sub-experiments shown in
the first row within SpinDrops.

90◦x·ei(0
◦) 90◦y·ei(90◦) 90◦−x·ei(180◦) 90◦−y·ei(270◦)

p=+1

p=−1

Figure 38: Experiment 4.Combine Cycles with initial state Î1z, coherence orders p1=+1
and −1 after a 90◦x, 90◦y, 90◦−x and 90◦−y pulse. The results of the four sub-
experiments are modified by the receiver phases, [0◦, 90◦, 180◦, 270◦], to select

the transition ∆p
I
=+1.
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Of course, our pulse sequence is not finished after the first pulse. Let’s assume we finish
the sub-experiments of group A with the second pulse being a 90◦x pulse for each. In case
of having performed only these four sub-experiments, Figure 39 would be the final result
of our experiment. It shows that adding the final results from our four sub-experiments
will not lead to a vanishing term at any coherence order. Thus, although we selected
∆p

I
=+1 at the first pulse, we were not yet able to select a coherence transitions with

∆p
II
=−2 at the second pulse.

90◦x·ei(0
◦) 90◦y·ei(90◦) 90◦−x·ei(180◦) 90◦−y·ei(270◦)

p=+2

p=+1

p=0

p=−1

p=−2

Figure 39: Experiment 4.Combine Cycles with initial state Î1z, coherence representa-
tion after the applied pulse sequences of only group A sub-experiments.
The results of the four sub-experiments are modified by the receiver phases,
[0◦, 90◦, 180◦, 270◦], to select the transition ∆p

I
=+1 at the first pulse.
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In order to select a coherence transition with ∆p
II
=−2 with the second pulse, we apply

a phase cycling procedure to that pulse.

Group B:

For this reason, we will now shift the phase of the second pulse by 90◦ relative to the
90◦x pulse used for the sub-experiments of group A.
However, we still have to take care to select the transition with ∆p

I
=+1 at the first

pulse. Consequently, we have to perform the four sub-experiments necessary to select
this transition. For this reason, we go again through the sequence [0◦, 90◦, 180◦, 270◦]
for the first pulse, while the second pulse remains at a constant shift of 90◦ relative to a
90◦x pulse.
The receiver phase for these four sub-experiments can not be the same as in group A
since we have shifted the phase of the second pulse. We have to take this into account.
In order to do so, we simply have to add the contribution RX

II
needed to select ∆p

II
=−2

at the second pulse to the sequence for the receiver phase used in group A. Since
we have a phase shift at the second pulse of ∆Φ=90◦, the phase in coherence will be
(−∆p

II
∆Φ) ≡ (−[−2]·90◦) = 180◦. The contribution RX

II
that we need in this situation

is therefore −180◦. The overall receiver phase for our four sub-experiments in group B
is therefore [0◦ − 180◦, 90◦ − 180◦, 180◦ − 180◦, 270◦ − 180◦] ≡ [180◦, 270◦, 0◦, 90◦].
Group B corresponds to the second row of sub-experiments of the 4.Combine Cycles
experiment within SpinDrops.

Group C:

In order to continue with our phase cycling procedure at the second pulse, we will use
a pulse phase for the second pulse of 180◦ instead of 90◦ used in group B. Of course,
we still have to select the transition with ∆p

I
=+1 at the first pulse. Thus, we have to

perform the required four sub-experiments.
For the receiver phase, we can again use the sequence from group A and add the contri-
bution RX

II
required to select ∆p

II
=−2 at the second pulse. Since we have to add a value

of (∆p
II
∆Φ) ≡ ([−2]·180◦) = −360◦ ≡ 0◦, this boils down to exactly the same sequence

for the receiver phase used in group A.
Group C corresponds to the third row of sub-experiments.

Group D:

Similarly, the last four sub-experiments are carried out with a pulse phase of the second
pulse of 270◦ and a receiver phase similar to the one for group B.
The last row in the 4.Combine Cycles experiment shows the sub-experiments of group D.
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We will now take a look at the different coherences orders after the 16 sub-experiments.
Since we made sure to have only p1=+1 after the first pulse and the goal is to select
∆p

II
=−2 for the second pulse, the coherence order p2=−1 is the only one which should

not cancel out completely.
Let’s first focus on coherence order p2=+2. Summation of these 16 results leads to its
complete cancellation. This can be seen by focusing on one column after another and
noticing that each pair of operators cancels.

S
e
c
o
n

d
P

u
ls

e

First Pulse

90◦x 90◦y 90◦−x 90◦−y

90◦x

90◦y

90◦−x

90◦−y

Figure 40: Experiment 4.Combine Cycles with initial state Î1z, coherence order p2=+2
after the applied pulse sequences of the 16 sub-experiments. The results of the
16 sub-experiments are modified by a receiver phase to select the transition
∆p

I
=+1 at the first pulse and ∆p

II
=−2 at the second pulse.
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For the coherence order p2=+1 the summation of all 16 results also leads to a complete
cancellation. One way to see this is to look at the table below and sum up successively
all the elements along imaginary diagonal lines.

S
e
c
o
n

d
P

u
ls

e

First Pulse

90◦x 90◦y 90◦−x 90◦−y

90◦x

90◦y

90◦−x

90◦−y

Figure 41: As Figure 40, but for coherence order p2=+1.
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Adding the contributions from successive columns shows that the terms for coherence
order p2=0 will cancel.

S
e
c
o
n

d
P

u
ls

e
First Pulse

90◦x 90◦y 90◦−x 90◦−y

90◦x

90◦y

90◦−x

90◦−y

Figure 42: As Figure 40, but for coherence order p2=0.
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The most important coherence for us is of order p2=−1. Due to our selected coherence
pathway, it should remain after the phase cycling procedure.
Half of the results illustrated in Figure 43 show a vanishing outcome and will therefore not
contribute to the final result of our experiment. The other half, however, shows exactly
the same pattern for each of the sub-experiments. Thus, we will have an accumulation
of these coherences.

S
e
c
o
n

d
P

u
ls

e

First Pulse

90◦x 90◦y 90◦−x 90◦−y

90◦x

90◦y

90◦−x

90◦−y

Figure 43: As Figure 40, but for coherence order p2=−1.
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For the sake of completeness, let’s take a look at the coherence order p2=−2. Here it is
again easy to see that the summation of all terms will lead to a complete cancellation.
You simply have to focus again on successive columns.

S
e
c
o
n

d
P
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ls

e

First Pulse

90◦x 90◦y 90◦−x 90◦−y

90◦x

90◦y

90◦−x

90◦−y

Figure 44: As Figure 40, but for coherence order p2=−2.

53



Mathematical development of the 4.Combine Cycles experiment:

Ĥ = (2πν1)̂I1z + (2πν2)̂I2z + (πJ)2Î1zÎ2z (1)

ρ0 = Î1z (2)

Effect of the first 90 ◦
x pulse :

Î1z

(π
2

)·̂I1x−−−−→ −Î1y (3)

−Î1y = −
1

2i
(̂I

+

1 − Î
−
1 )

filter ∆p
I
=+1−−−−−−−−−→

i.e. p=+1
−

1

2i
Î
+

1 (4)

In equation (4) we used the definition of Î1y in terms of the raising and lowering operator.
Due to our filtering via phase cycling, the Î+

1 term is the only one of interest to us and
we can ignore the other term.
In the following, the filtering process in equation (4) will be investigated in more detail.
We recognize that in each of the groups (A,B,C,D) the phase of the first pulse goes
through the sequence [0◦, 90◦, 180◦, 270◦]. Furthermore, the receiver phase of each sub-
experiment contains a contribution that accounts for the shift of the first pulse, RX

I
,

and causes a transition from p0=0 to p1=+1. This means the contribution RX
I

that
accounts for the first pulse goes through the sequence [0◦, 90◦, 180◦, 270◦] in each of the
four groups. Since the phase cycling procedure to select the desired coherence transition
with the first pulse is identical in each group, we can reduce our attention to the four
sub-experiments of just one them.

Î1z

(π
2

)·̂I1x−−−−→ −Î1y
multiply with−−−−−−−−−→
RX

I
= 1

−Î1y = −

(
1

2i
(̂I

+

1 − Î
−
1 )

)
= −

1

2i
Î
+

1 +
1

2i
Î
−
1 (5)

Î1z

(π
2

)·̂I1y−−−−→ Î1x
multiply with−−−−−−−−−→
RX

I
= i

i · Î1x = i ·
(

1

2
(̂I

+

1 + Î
−
1 )

)
= −

1

2i
Î
+

1 −
1

2i
Î
−
1 (6)

Î1z

−(π
2

)·̂I1x−−−−−→ Î1y
multiply with−−−−−−−−−→
RX

I
= −1

Î1y = −1 ·
(

1

2i
(̂I

+

1 − Î
−
1 )

)
= −

1

2i
Î
+

1 +
1

2i
Î
−
1 (7)

Î1z

−(π
2

)·̂I1y−−−−−→ −Î1x
multiply with−−−−−−−−−→
RX

I
= −i

i · Î1x = i ·
(

1

2
(̂I

+

1 + Î
−
1 )

)
= −

1

2i
Î
+

1 −
1

2i
Î
−
1 (8)

The results from equation (5)-(8) show that the Î+
1 terms survive the phase cycling

procedure while the Î−1 terms cancel.

Thus, after the first pulse we have: −
1

2i
Î
+

1
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Free evolution :

Since all the terms in the Hamiltonian commute, we can look at the evolution under
individual terms successively.

Effect of the (2πν1)̂I1z term:

−
1

2i
Î
+

1
(2πν1t)·̂I1z−−−−−−→ −

1

2i
Î
+

1 · e
−i(2πν1t) (9)

−
1

2i
Î
+

1 · e
−i(2πν1t) = −

1

2i
Î
+

1 · (cos(2πν1t) − i sin(2πν1t)) (10)

= −
1

2i
Î
+

1 · (−1 − i · 0) (11)

=
1

2i
Î
+

1 (12)

In equation (9), the definition of the coherence order is used to evaluate the evolution of
Î+
1 . In equation (10)-(12) we made use of Euler’s formula and substituted the parameters

for ν1=1 Hz and t= 1
2·J12= 1

2·1Hz=500 ms:

e−i(2πν1t) = cos(2πν1t) − i sin(2πν1t)

cos(2πν1t) = cos(π) = −1

sin(2πν1t) = sin(π) = 0

Effect of the (πJ)2Î1zÎ2z term:

In order to evaluate the effect of the (πJ)2Î1zÎ2z term, we replace Î+
1 in equation (13) by

its definition in terms of Î1x and Î1y:

1

2i
Î
+

1 =
1

2i
(̂I1x + îI1y) =

1

2i
Î1x +

1

2
Î1y (13)
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Now we follow each term separately:

1

2i
Î1x

(πJt)·2Î1z Î2z−−−−−−−−→ 1

2i

(
Î1x cos(πJt) + 2Î1yÎ2z sin(πJt)

)
=

1

2i
· 2Î1yÎ2z (14)

1

2
Î1y

(πJt)·2Î1z Î2z−−−−−−−−→ 1

2

(
Î1y cos(πJt) − 2Î1xÎ2z sin(πJt)

)
= −

1

2
· 2Î1xÎ2z (15)

Thus,

1

2i
Î
+

1
(πJt)·2Î1z Î2z−−−−−−−−→ 1

2i
· 2Î1yÎ2z −

1

2
· 2Î1xÎ2z (16)

Equation (14) describes the evolution of the Î1x term, while equation (15) describes the
evolution of the Î1y term. In both, we substitute t = 1

2·J12 and recognize that

cos(πJt) = cos(
π

2
) = 0

sin(πJt) = sin(
π

2
) = 1

Knowing the evolution of the individual terms, we are now able the write the effect of
(πJ)2Î1zÎ2z on 1

2i Î
+
1 which is shown in equation (16).

After the delay time our outcome is described by:
1

2i
· 2Î1yÎ2z −

1

2
· 2Î1xÎ2z
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Effect of the second 90 ◦
x pulse :

1

2i
· 2Î1yÎ2z

(π
2

)·̂I1x + (π
2

)·̂I2x−−−−−−−−−−−→ −
1

2i
· 2Î1zÎ2y (17)

−
1

2
· 2Î1xÎ2z

(π
2

)·̂I1x + (π
2

)·̂I2x−−−−−−−−−−−→ 1

2
· 2Î1xÎ2y (18)

Thus,

1

2i
· 2Î1yÎ2z −

1

2
· 2Î1xÎ2z

(π
2

)·̂I1x + (π
2

)·̂I2x−−−−−−−−−−−→ −
1

2i
· 2Î1zÎ2y +

1

2
· 2Î1xÎ2y (19)

In equation (17) and (18) we apply the 90◦x pulses to each term of our state separately.
The result is then summarized in equation (19).
The important point is now that we also applied a phase cycling procedure to the second
pulse. Due to this procedure only the coherence order p=−1 will be of interest to us and
we ignore all other terms.
In order to figure out which term remains after the phase cycling, we have to write all
the transverse magnetizations in term of the raising and lowering operators. We will
first focus on the − 1

2i ·2Î1zÎ2y term:

−
1

2i
· 2Î1zÎ2y = −

1

2i
· 2Î1z

(
1

2i
(̂I

+

2 − Î
−
2 )

)
= −

1

2i
· 1

2i
· 2Î1zÎ

+

2 +
1

2i
· 1

2i
· 2Î1zÎ

−
2

−
1

2i
· 1

2i
· 2Î1zÎ

+

2 +
1

2i
· 1

2i
· 2Î1zÎ

−
2

filter ∆p
II
=−2−−−−−−−−−→

i.e. p=−1

1

2i
· 1

2i
· 2Î1zÎ

−
2 = −

1

4
· 2Î1zÎ

−
2

The 1
2 ·2Î1xÎ2y term contains no parts with coherence order p=−1:

1

2
· 2Î1xÎ2y =

1

2
· 2
(

1

2
(̂I

+

1 + Î
−
1 ) · ( 1

2i
(̂I

+

2 − Î
−
2 ))

)
=

1

4i
·
(

Î
+

1 Î
+

2 − Î
−
1 Î

−
2 − Î

+

1 Î
−
2 + Î

−
1 Î

+

2

)
We can see that 2Î1xÎ2y contains only zero- and double-quantum terms.
(Generally speaking, all 2Î1iÎ2j terms (i,j = x or y) are mixtures of zero- and double-
quantum coherence)
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Equation (20) illustrates the effect of the filtering achieved by the second pulse.

−
1

2i
· 2Î1zÎ2y +

1

2
· 2Î1xÎ2y

filter ∆p
II
=−2−−−−−−−−−→

i.e. p=−1

1

2i
· 1

2i
· 2Î1zÎ

−
2 = −

1

4
· 2Î1zÎ

−
2 (20)

The result of our entire experiment is therefore: −
1

4
· 2Î1zÎ

−
2

This is exactly the same result obtained with our visual inspection of the phase cycling
procedure:

−1
4 · 2Î1zÎ

−
2

Figure 45: Final result of the 4.Combine Cycles experiment with initial state Î1z.
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3.5 Reducing the Number of Phase Cycling Sub-Experiments

The number of necessary experiments grows exponentially when using the ’brute force’
approach described in subsection 3.4. The following subsection introduces strategies to
reduce this large number.

3.5.1 Pulse Applied to Equilibrium Magnetization

An important property of a pulse applied to equilibrium magnetization (e.g. Î1z with
coherence order zero) is that it can only result in coherences of order ±1. In order to
understand this, we have to recognize that a pulse applied to Î1z can only generate Î1x

or Î1y (both have equal mixtures of p=+1 and p=−1).
(Note: multiple-quantum coherence is created by applying a pulse to an anti-phase state)

For many pulse sequences, the generation of coherence orders p=±1 from equilibrium
magnetization is desired. Thus, applying a phase cycle to the first pulse is often not
necessary.

3.5.2 The Final Pulse

The task of the last pulse in a pulse sequence is usually to cause a transition to the
observable coherence p=−1. There is no need to consider other pathways since we simply
can not detect them.
Imagine we achieved the desired coherences just prior to this final pulse. Then there
is no need to select the final transition to p=−1. The corresponding phase cycle would
cancel the transitions to all other coherences, except for the transition to p=−1. However,
because we can not detect the other coherences, adding these phase cycles would not
change the result of our experiment. (Comparing this with subsection 3.4 shows that the
phase cycling procedure at the last pulse was not necessary.)

3.5.3 High-Order Multiple-Quantum Coherences

As mentioned earlier, there is no need to consider all possible coherence orders. The
generation of coherences with order greater than triple-quantum is usually very unlikely
since it requires significant coupling of one spin to more than three other spins.

3.5.4 Grouping Pulses Together

So far, we applied phase cycles to individual pulses in order to select particular coherence
pathways. However, it is also possible to group pulses together and apply a phase cycling
procedure to the entire group. The only thing we have to do is to shift all the pulses in
the group by the same phase at the individual steps in a phase cycling procedure. Thus,
there is no need to apply phase cycles to each pulse in the group separately.
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4 The DQF COSY Experiment

DQF COSY is a two-dimensional experiment which is often used in practice. The spec-
tra from a COSY and a DQF COSY experiment were shown at the beginning of this
tutorial. The DQF COSY spectrum offers benefits compared to the COSY spectrum
and is obtained via phase cycling.
Since we now know about phase cycling, we are able to understand the process of double-
quantum filtering during the DQF COSY experiment.

The pulse sequence of a DQF COSY experiment and the desired CTP are shown below:

Figure 46: DQF COSY pulse sequence (top) and a Coherence Transfer
Pathway (bottom).

The CTP shows only the desired pathway. However, there are more coherences present
at the individual stages of a single sub-experiment. The CTP that is shown will be
obtained via phase cycling. It illustrates that the signals will be filtered through a stage
of double-quantum coherence between the second and third pulse.

Exercise:

Try to figure out the minimum number of phase cycles we will need to obtain the CTP
above. At which pulses do we need to apply a phase cycling procedure and what is the
number of steps for each phase cycle?
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Option 1:

The CTP we are going the select can be achieved with only one 4-Step-Cycle.
Our CTP shows multiple pathways. Fortunately, the phase cycling procedure has the
ability to select multiple pathways at the same time. The pathways we need correspond
to a transition from the initial coherence order p0=0 to the coherence orders p2=±2 after
the second pulse (i.e. ∆p

I+II
=±2 for this group of pulses). Since the ∆p values differ by

four, we can select both pathways by using a 4-Step-Cycle. Thus, the CTP can be ob-
tained by grouping together the first two pulses, and then cycle them together to select
the desired transition.
The final pulse causes the transition to the observable coherence order p3=−1. A second
phase cycle at the final pulse is not necessary. There is no need to cycle the transi-
tion from the already selected coherence orders p2=±2 to p3=−1 since the coherence
order p3=−1 is the only observable coherence anyway. Cancelling the transition to other
coherence orders via phase cycling would not change the outcome of the experiment.

Option 2:

There is an alternative approach leading also to the desired CTP. It also uses a single
4-Step-Cycle. The phase cycling procedure is applied to the third pulse.
To understand this, consider the final coherence p3=−1 at the end of our pulse sequence.
This is the only observable coherence. Our task is to guide the coherences p2=+2 and
p2=−2 to this final coherence. Again, we can use the property of the phase cycling proce-
dure to select multiple pathways at the same time. The pathways we need correspond to
a transition with ∆p

III
=−3 for the coherence order p2=+2 and a transition with ∆p

III
=+1

for coherence order p2=−2. The ∆p values differ again by a value of four. Thus, we
select both pathways by using a 4-Step-Cycle.
Selecting these transitions comes with the benefit that p2=+2 and p2=−2 are the only
coherence orders we need to consider during the second and the third pulse.
In addition, there is no need to select the coherences p1=+1 and p1=−1 during the first
and the second pulse. The reason for this is that we start with equilibrium magnetization
and the first pulse can only result in coherence order p1=±1.

We will now illustrate the first procedure.
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In order to go through the sequence, we have to prepare our system:

• Spin System ≫ 2-Spin

• Spin System ≫ 2-Spin ≫ Parameters
and set the first offset frequency ν1 to 1 Hz,
set the second offset frequency ν2 to −1 Hz
and the coupling J12 to 1 Hz.

• Initial State ≫ I1z

• Options ≫ Separation ≫ Coh. Order p

• Pulse Sequence ≫ Tutorial ≫ Phase Cycling ≫ 5.DQF COSY
Note: The delay time between first and second pulse
in the sub-experiments is 365ms.
It will be used for subsequent calculations.

We want to apply a 4-Step-Cycle to a group that contains the first two pulses in our
pulse sequence. Since it is a 4-Step-Cycle, the phase shift of the pulses go through the
sequence [0◦, 90◦, 180◦, 270◦].
One of the desired coherence transitions is ∆p

I+II
=−2. In section 3.2 we have seen how

the phases acquired by individual coherences can be calculated. The phase acquired by
the coherence is (−∆p

I+II
∆Φ) ≡ (−[−2]∆Φ), i.e. the phase goes through the sequence [0◦,

180◦, 360◦, 540◦], or mapped to the [0◦,360◦] range [0◦, 180◦, 0◦, 180◦].
The receiver phase is therefore [0◦, −180◦, 0◦, −180◦]. Mapped these to the [0◦,360◦]
range we have again [0◦, 180◦, 0◦, 180◦].
In section 3.3.2 we have seen that phase cycling selects an entire set of coherence
transitions. Since we have a 4-Step-Cycle, we have not only selected the transition
with ∆p

I+II
=−2, but additionally ∆p

I+II
=−2+1·4=+2 (≡ ∆p+nN). Thus, the setup for our

4-Step-Cycle is complete and we can start to perform the experiment.
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During the first sub-experiment of our 4-Step-Cycle the involved pulses are 90◦x pulses.
Let’s consider the effect of them on our initial state.
Therefore, we start with equilibrium magnetization on spin one, i.e. Î1z, and apply a
90◦x pulse.

Î1z −Î1y = − 1
2i Î

+
1

+ 1
2i Î

−
1

90◦x pulse−−−−−−−−−→

Figure 47: Experiment 5.DQF COSY with initial state Î1z, initial state (left) and state
after the first 90◦x pulse (right).

Now, we let this state evolve during the delay time t1.

−Î1y = − 1
2i Î

+
1

+ 1
2i Î

−
1 State after t1

delay time−−−−−−−→
t1

Figure 48: Experiment 5.DQF COSY with initial state Î1z, state after first 90◦x pulse
(left) and after delay time t1 (right).

The state after the delay time t1 is a superposition of a few operators.
(Note: You can see them listed explicitly via Options ≫ List Prod. Ops. within SpinDrops)
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The second 90◦x pulse has the following effect.

State after t1 State after 2nd 90◦x pulse

90◦x pulse−−−−−−−−−→

Figure 49: Experiment 5.DQF COSY with initial state Î1z, state after delay time t1

(left) and after second 90◦x pulse (right).

This is the result from the first sub-experiment of our phase cycling procedure. We still
have to perform sub-experiments with 90◦y, 90◦−x, 90◦−y pulses as the first two pulses in
the sequence. In order to track the coherences during the phase cycling procedure, we
also have to take the individual receiver phases into account.
(Actually, the receiver phase is applied to the individual sub-experiments before sum-
mation. However, in order to understand the effect of the phase cycling procedure, we
will take the receiver phase into consideration in the DROPS images.)
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After performing the sub-experiments, the results are added together. Therefore, let’s
consider the situation after the first two pulses. We will focus on one coherence order
after another.

For the coherence order p2=+2 we expect accumulating results. The corresponding
droplets are shown in Figure 50 and fulfill our expectation.

90◦x·ei(0
◦) 90◦y·ei(180◦) 90◦−x·ei(0

◦) 90◦−y·ei(180◦)

p=+2

Figure 50: Experiment 5.DQF COSY with initial state Î1z, coherence order p2=+2 after
the applied pulse sequences of the four sub-experiments. The results of the
four sub-experiments are modified by a receiver phase to select the transition
∆p

I+II
=±2 at the first two pulses.
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The terms at coherence order p2=+1 will cancel out completely. This can be seen by
adding the results from the first and the third sub-experiments, which will cancel each
other. The same is true for the second and fourth sub-experiment.

Operator at I1

90◦x·ei(0
◦) 90◦y·ei(180◦) 90◦−x·ei(0

◦) 90◦−y·ei(180◦)

p=+1

Figure 51: As Figure 50, but for droplets located at I1 with coherence order p2=+1.

Operator at {12}

90◦x·ei(0
◦) 90◦y·ei(180◦) 90◦−x·ei(0

◦) 90◦−y·ei(180◦)

p=+1

Figure 52: As Figure 50, but for droplets located at {12} with coherence order p2=+1.
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The terms at coherence order p2=0 will also be cancelled out due to the phase cycling
procedure.

Operator at I1

90◦x·ei(0
◦) 90◦y·ei(180◦) 90◦−x·ei(0

◦) 90◦−y·ei(180◦)

p=0

Figure 53: As Figure 50, but for droplets located at I1 with coherence order p2=0.

Operator at {12}

90◦x·ei(0
◦) 90◦y·ei(180◦) 90◦−x·ei(0

◦) 90◦−y·ei(180◦)

p=0

Figure 54: As Figure 50, but for droplets located at {12} with coherence order p2=0.

67



The same is true for coherence order p2=−1. Similar to coherence order p2=+1, the
results from the first sub-experiment cancels with the third sub-experiment, and the
result from the second sub-experiment cancels with the fourth sub-experiment.

Operator at I1

90◦x·ei(0
◦) 90◦y·ei(180◦) 90◦−x·ei(0

◦) 90◦−y·ei(180◦)

p=−1

Figure 55: As Figure 50, but for droplets located at I1 with coherence order p2=−1.

Operator at {12}

90◦x·ei(0
◦) 90◦y·ei(180◦) 90◦−x·ei(0

◦) 90◦−y·ei(180◦)

p=−1

Figure 56: As Figure 50, but for droplets located at {12} with coherence order p2=−1.
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Coherence order p2=−2 is again a coherence selected by our phase cycling procedure.
Thus, we expect again to have accumulating results.

90◦x·ei(0
◦) 90◦y·ei(180◦) 90◦−x·ei(0

◦) 90◦−y·ei(180◦)

p=−2

Figure 57: As Figure 50, but for droplets located at {12} with coherence order p2=−2.

Since the phase cycling procedure is acting as desired, the last thing we have to do is to
apply the last 90◦x pulse. The effect of this pulse is illustrated below:

double-quantum filtered result
before 90◦x pulse

double-quantum filtered result
after 90◦x pulse

90◦x pulse−−−−−−−−−→

Figure 58: Experiment 5.DQF COSY with initial state Î1z, filtered result after selecting
the transition ∆p

I+II
=±2 at the first two pulses via phase cycling (left) and

after third 90◦x pulse (right).

The only coherence order of interest to us is the one with p3=−1 since this is the only
one which can be observed. With this, our DQF COSY experiment is finished.
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Mathematical development of the 5.DQF COSY experiment:

Ĥ = (2πν1)̂I1z + (2πν2)̂I2z + (πJ)2Î1zÎ2z (1)

ρ0 = Î1z (2)

Effect of the first 90 ◦
x pulse :

Î1z

(π
2

)·̂I1x−−−−→ −Î1y (3)

Free evolution :

Since all the terms in the Hamiltonian commute, we can look at the individual terms
successively.

Effect of the (2πν1)̂I1z term:

−Î1y
(2πν1t1)·̂I1z−−−−−−−→ −Î1y cos(2πν1t1) + Î1x sin(2πν1t1) (4)
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Effect of the (πJ)2Î1zÎ2z term:

In order to evaluate the effect of the (πJ)2Î1zÎ2z term, we focus separately on the Î1y

and the Î1x term and then combine the results.

−Î1y cos(2πν1t1)
(πJt1)·2Î1z Î2z−−−−−−−−→ −Î1y cos(2πν1t1) cos(πJt1) (5)

+ 2Î1xÎ2z cos(2πν1t1) sin(πJt1)

Î1x sin(2πν1t1)
(πJt1)·2Î1z Î2z−−−−−−−−→ Î1x sin(2πν1t1) cos(πJt1) (6)

+ 2Î1yÎ2z sin(2πν1t1) sin(πJt1)

−Î1y cos(2πν1t1) + Î1x sin(2πν1)
(πJt1)·2Î1z Î2z−−−−−−−−→ −Î1y cos(2πν1t1) cos(πJt1) (7)

+ 2Î1xÎ2z cos(2πν1t1) sin(πJt1)

+ Î1x sin(2πν1t1) cos(πJt1)

+ 2Î1yÎ2z sin(2πν1t1) sin(πJt1)

Equation (5) describes the evolution of the Î1y term, while equation (6) describes the
evolution of the Î1x term.
Knowing the evolution of the individual terms, we are now able the write the effect of
(πJ)2Î1zÎ2z which is shown in equation (7).

The result after the delay time is: −Î1y cos(2πν1t1) cos(πJt1)

+ 2Î1xÎ2z cos(2πν1t1) sin(πJt1)

+ Î1x sin(2πν1t1) cos(πJt1)

+ 2Î1yÎ2z sin(2πν1t1) sin(πJt1)
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Effect of the second 90 ◦
x pulse :

−Î1y cos(2πν1t1) cos(πJt1)
(π
2

)·̂I1x + (π
2

)·̂I2x−−−−−−−−−−−→ −Î1z cos(2πν1t1) cos(πJt1) (8)

2Î1xÎ2z cos(2πν1t1) sin(πJt1)
(π
2

)·̂I1x + (π
2

)·̂I2x−−−−−−−−−−−→ −2Î1xÎ2y cos(2πν1t1) sin(πJt1) (9)

Î1x sin(2πν1t1) cos(πJt1)
(π
2

)·̂I1x + (π
2

)·̂I2x−−−−−−−−−−−→ Î1x sin(2πν1t1) cos(πJt1) (10)

2Î1yÎ2z sin(2πν1t1) sin(πJt1)
(π
2

)·̂I1x + (π
2

)·̂I2x−−−−−−−−−−−→ −2Î1zÎ2y sin(2πν1t1) sin(πJt1) (11)

In equation (8) - (11) we apply the 90◦x pulses to each term of our state separately.

After the second 90◦x pulse the result is: −Î1z cos(2πν1t1) cos(πJt1)

−2Î1xÎ2y cos(2πν1t1) sin(πJt1)

+Î1x sin(2πν1t1) cos(πJt1)

−2Î1zÎ2y sin(2πν1t1) sin(πJt1)

Due to phase cycling, only terms with p2=±2 will survive. Only these coherence orders
will be of interest to us and we ignore all other terms. Thus, we have to figure out which
terms of our current state fulfill this condition.
We can ignore the Î1z-term since it corresponds to coherence order p2=0.
The Î1x and the 2Î1xÎ2y terms are of coherence order p2=±1 and therefore also not of
interest to us.
In fact, it is only the 2Î1xÎ2y term which contains double-quantum coherence.
(Remember: all 2Î1iÎ2j terms (i,j = x or y) are mixtures of zero- and double-quantum
coherence)

−2Î1xÎ2y cos(2πν1t1) sin(πJt1) = α · 2Î1xÎ2y (12)

α · 2Î1xÎ2y = α · 1

2i
(̂I

+

1 Î
+

2 − Î
−
1 Î

−
2 − Î

+

1 Î
−
2 + Î

−
1 Î

+

2 ) (13)

α · 1

2i
(̂I

+

1 Î
+

2 − Î
−
1 Î

−
2 − Î

+

1 Î
−
2 + Î

−
1 Î

+

2 )
filter ∆p

I+II
=±2−−−−−−−−−−→

i.e. p=±2

α

2i
(̂I

+

1 Î
+

2 − Î
−
1 Î

−
2 ) (14)

In equation (12) we replaced the t1-dependent trigonometric terms with α for clarity.
Equation (13) - (14) illustrate the effect of our filtering process.
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The result after the phase cycling procedure is: α · 1

2i
(̂I

+

1 Î
+

2 − Î
−
1 Î

−
2 )

Effect of the third 90 ◦
x pulse :

In order to apply the third 90◦x pulse, we rewrite our result in terms of transverse mag-
netizations.

α · 1

2i
(̂I

+

1 Î
+

2 − Î
−
1 Î

−
2 )

= α · 1

2i

(
(̂I1x + îI1y)(̂I2x + îI2y) − (̂I1x − îI1y)(̂I2x − îI2y)

)
= α · 1

2i
(̂I1xÎ2x + îI1xÎ2y + îI1yÎ2x − Î1yÎ2y − Î1xÎ2x + îI1xÎ2y + îI1yÎ2x + Î1yÎ2y)

= α · (̂I1xÎ2y + Î1yÎ2x)

Now we can easily apply the third 90◦x pulse.

α · (̂I1xÎ2y + Î1yÎ2x)
(π
2

)·̂I1x + (π
2

)·̂I2x−−−−−−−−−−−→ α · (̂I1xÎ2z + Î1zÎ2x) (15)

In order to compare the result with our visual inspection, we have to go to the repre-
sentation in terms of raising and lowering operator one last time.

α · (̂I1xÎ2z + Î1zÎ2x) = α ·
(

1

2
(̂I

+

1 + Î
−
1 )̂I2z + Î1z

1

2
(̂I

+

2 + Î
−
2 )

)
= α · 1

2
·
(

Î
+

1 Î2z + Î
−
1 Î2z + Î1zÎ

+

2 + Î1zÎ
−
2

)
Finally, we take this result, restore α and rearranged the resulting terms.

α · 1

2
·
(

Î
+

1 Î2z + Î
−
1 Î2z + Î1zÎ

+

2 + Î1zÎ
−
2

)
(16)

=
(

Î
+

1 Î2z + Î
−
1 Î2z + Î1zÎ

+

2 + Î1zÎ
−
2

)
· (−1

2
) cos(2πν1t1) sin(πJt1)
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The result of our entire experiment is therefore:

(
Î
+

1 Î2z + Î
−
1 Î2z + Î1zÎ

+

2 + Î1zÎ
−
2

)
· (−1

2
) cos(2πν1t1) sin(πJt1)

= (̂I1xÎ2z + Î1zÎ2x) · (−1

2
) cos(2πν1t1) sin(πJt1)

Substituting the values for the offset frequency (ν1=1 Hz), the coupling constant (J12=1 Hz)
and the delay time (t=365 ms) shows that this is the same result obtained with our visual
inspection of the DQF COSY experiment.

0.3·(̂I+
1 Î2z + Î−1 Î2z + Î1zÎ

+
2

+ Î1zÎ
−
2 )

Figure 59: Final result of the 5.DQF COSY experiment with initial state Î1z.
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Since only coherence order p3=−1 is observable, it is the only coherence order we have
to consider.

0.3·(̂I−1 Î2z + Î1zÎ
−
2 )

Figure 60: Final result of the 5.DQF COSY experiment with initial state Î1z, coherence
order p3=−1.
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Final remark:

With the help of this tutorial, we are now able to understand filtering process as used
in the DQF COSY experiment. The occurrence of a much nicer looking spectrum in
a DQF COSY experiment compared to a simple COSY experiment was not discussed.
In fact, this can be explained by a closer inspection of lineshapes measured with NMR
experiments. Nevertheless, we would like to point out that both of the resulting anti-
phase terms of our DQF COSY experiment have the same modulation in t1 and both
appear along the x-axis (i.e. no mixtures of Îkx and Îky). This allows the generation of
a spectrum with double absorption mode lineshapes for all lines in the spectrum. In a
simple COSY experiment this is not possible.
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