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SpinDrops Tutorial
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Introduction
SpinDrops provides an interactive approach to visualize the rich dynamics of spin systems. 
The app is based on the so-called DROPS representation (A. Garon et al., 2015), which 
provides a general approach for the visualization of arbitrary spin operators. 

The interactivity of SpinDrops allows you to explore the app (and the world of spins) simply by 
trying different options and parameters. The following tutorial and the material in the Help 
menu provide useful background information to become familiar with the handling of the app 
and with the DROPS representation.

In the Help menu, you will also find a number of Challenges that you may want to tackle and 
try to solve! 

PDF files of the Help menu can also be downloaded at http://www.glasersystems.de/manuals.



✕

Here is a top 5 list of some of the best reasons why using the app may be worthwhile:

(1)  Have fun with spin dynamics.
(2)  Actually see what is going on in an experiment.
(3)  Understand the properties of spin operators.
(4)  Develop intuition about the effects of pulse sequences.
(5)  Become familiar with standard experimental building blocks, invent and test novel pulse 

sequences.

Why use the app?



✕

What will I learn?

Top 5 concepts that can be learned by working and playing with SpinDrops:

(1)Effects of non-selective and selective rotations on spin operators.
(2)Effects of frequency offsets and spin-spin couplings.
(3)Effects of various experimental building blocks to manipulate the state of a spin system.
(4)Product operators (antiphase operators, multiple-quantum coherence, coherence order).
(5)Principles of polarization and coherence transfer.



✕

Limitations of the Cartesian product operator formalism

In version 1.2 of SpinDrops, simulations are based on the 
standard Cartesian product operator formalism. This 
elegant formalism provides simple analytical expressions to 
calculate the dynamics of coupled spins. However, it also 
has some limitations:

⦁ Ideal pulses are assumed, i.e. the effects of frequency 
offsets and couplings are not taken into account during the 
pulses.

⦁ During delays, the weak coupling limit is assumed. For heteronuclear spins, this is always an 
excellent approximation. However, the simulations of homonuclear spin systems is not exact if 
strong coupling effects play a role (i.e. if the offset-difference of two spins is on the same order 
of magnitude as the J coupling between them). This is not a problem as long as you are aware 
of this limitation. In fact, it allows you to see and study the effects of simultaneous offset and 
weak coupling evolution on a comparable time-scale, which would not be possible otherwise. 
Although strong coupling effects are neglected during delays, they are fully taken into account 
in the simulation of spin dynamics of two coupled spins under isotropic mixing conditions (in 
TOCSY and TACSY experiments).
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The app can be used in many different ways and you are encouraged to explore these 
possibilities in your own way. A typical approach to see the spin dynamics created by a given 
pulse sequence involves the following steps:

• Select a spin system and its parameters (offset frequencies and coupling constants).
• Choose the initial state of the spin system (e.g. z magnetization of spin I1).
• Pick a pulse sequence (e.g. a 90° pulse followed by a delay).
• Run the pulse sequence by touching the play icon ( ▶ ) and see the resulting time evolution
    in the DROPS display.

How to Use the SpinDrops App

Time Evolution

▶
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The Start Screen

DROPS Display

Menu Panel

Pulse Sequence

Control Panel
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By default, the option “3 Spin Triangle” is selected, which can always be used 
for systems consisting of up to three coupled spins. However, for applications 
involving only a single spin, two spins or a three spin chain (with no coupling 
between the first and the third spin), the display can be simplified using the 
options 1 Spin, 2 Spins, or 3 Spin Chain, respectively.

Selecting a Spin System and its Parameters (A)

1 Spin 2 Spins

3 Spin Chain 3 Spin Triangle
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Selecting a Spin System and its Parameters (B)

The spin system parameters (frequencies v and couplings J) can be 
inspected and modified in a control panel that can be opened in the 
menu Spin System > Parameters. (To close the panel, select Spin 
System > Hide Parameters.)

The offset frequencies ν1, ν2, ν3 and the coupling 
constants J12, J13, J23 can be adjusted using the 
sliders. In the current version of SpinDrops, only the 
range of ± 2 Hz is available for these parameters. This 
ensures that the spin dynamics is fluent for typical 
frame rates of mobile devices. In the default mode, 
only discrete values of the parameters can be set by 
the sliders in steps of 0.1 Hz. This makes it easier to 
set a slider e.g. to a value of exactly 0 Hz. However, it 
is also possible to set the parameter values 
continuously by selecting Display Options > Slider 
Steps > Smooth.



✕

To see all entries of your own 
library of experiments, touch “List 
All”. If not all entries fit on one 
page, the list can be scrolled by a 
s w i p e . F r o m t h i s l i s t , a n 
experiment can be selected by a 
double tap. The list can be closed 
by touching the “X”.

Selecting Read Experiment displays the names of the five most recently used 
experiments of your library, which can be chosen by a single tap.

The buttons Save Experiment and Read Experiment allows you to store and 
retrieve all the necessary information for the simulation an experiment:

Saving and Reading Simulation Projects

• the spin system and its parameters (frequencies v and couplings J),
• the initial state,
• the pulse sequence.

By using the buttons at the bottom of the list of 
experiments, it is also possible to save the 
current experiment and to rename or to delete an 
experiment from the list.
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Shorthand Notation for Cartesian Product Operators

In the menu  Initial State > Edit Operator and the display panel Display Options > List Prod. Ops., 
the following shorthand notation is used for Cartesian product operators:

eee= 1/2 E, i.e. 1/2 times the identity operator,
zee = I1z,
exe = I2x,  
eey = I3y,
xze = 2I1xI2z,
zey = 2I1zI3y,
ezz = 2I2zI3z,
xyz = 4I1xI2yI3z  

Here, the letters “x”, “y” and “z" represent the individual  Cartesian spin operators Ix, Iy and Iz and 
the position of each letters indicates the spin it is associated with. The letter “e” represents the 
identity operator for a given spin. The standard prefactors  (“1/2” for the identity operator E, “1” for 
linear operators, “2” for bilinear terms, and “4” for trilinear terms) are absorbed in the shorthand 
notation. In order to emphasize the spin operators Ix, Iy and Iz, the letters “x”, “y” and “z" are 
displayed on a dark grey background, whereas the terms “e” are displayed with a light grey 
background in the list displayed on the right.
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Defining the Initial State (A)
The Initial State of the spin system is 
defined by choosing one of the options in 
the corresponding menu. The default initial 
state is I1z, corresponding to z magneti-
zation of the first spin. 

In addition, the following commonly used 
initial states can be chosen: 
I1x: x magnetization of the first spin, 
I1(+): I1+ = I1x + i I1y, 

The option MQ (+/− ops.) provides a selection of multiple-quantum operators with a unique 
quantum order p based on raising and lowering operators.

and total z magnetization (I1z+I2z+I3z in the case of a three-spin system).

The option  MQ (x/y ops.) provides a selection of multiple-quantum operators 
with quantum order ±p based on real combinations of Cartesian product 
operators. 

The option Edit Operator opens a new menu that allows you to change the initial density operator 
and to define any desired operator (see the following pages). An edited operator can also be 
stored and retrieved by using the options Save Operator and Read Operator, respectively.

The option Singlet(12) provides the traceless part (I1xI2x+I1yI2y+I1zI2z) of the singlet state involving 
the first and second spin.
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Defining the Initial State (B): Multiple-Quantum Operators 
Based on Cartesian Product Operators

0Q(I1,I2): Zero-quantum operators involving the first and
second spin.
0Qx(I1,I2), x component of the zero-quantum 
operator involving spins I1 and I2: I1xI2x+I1yI2y
0Qy(I1,I2), y-component of the zero-quantum 
operator involving spins I1 and I2: I1yI2x−I1xI2y

0Q(I1,I2,I3): Zero-quantum operators involving three spins.

1Q(I1): ± 1-quantum coherence of the first spin (I1x, I1y)

1Q(I1,I2) and 1Q(I1,I2,I3): ± 1-quantum operators of two
and three spins, respectively.

2Q(I1,I2) and  2Q(I1,I2,I3): ± 2-quantum operators.

3Q(I1,I2,I3): ± 3-quantum operators involving three spins.

Tip: In order to see how the chosen operator is defined in terms of Cartesian product operators, 
select Display Options > List Prod. Ops.
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Defining the Initial State (C): Multiple-Quantum Operators 
with Defined Coherence Order Using I + and I − Operators

0Q(I1,I2): Zero-quantum operators involving the first and
second spin.
I1(+)*I2(−), zero-quantum operator I1+I2−  involving 
spins I1 and I2.
I1(−)*I2(+), zero-quantum operator I1−I2+  involving 
spins I1 and I2.

0Q(I1,I2,I3): Zero-quantum operators involving three spins.

1Q(I1):  +1 or −1-quantum coherence of the first spin (I1+, I1−)

1Q(I1,I2) and 1Q(I1,I2,I3): +1 or −1-quantum operators of two
and three spins, respectively.

2Q(I1,I2) and  2Q(I1,I2,I3): +2 or −2-quantum operators.

3Q(I1,I2,I3): +3 or −3-quantum operators.

Tip: In order to see how the chosen operator is defined in terms of Cartesian product operators, 
select Display Options > List Prod. Ops.
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The current initial state of the spin system can be edited 
and hence any desired initial state can be defined in the 
input panel Initial State > Edit Operator.

The display on the right shows the input panel after 
opening it, when the current initial state is I1z (i.e. zee in 
our shorthand notation).

In the upper left part of the input panel, Cartesian product 
operators can be defined using the button x, y, z, and e, 
(highlighted by a red ellipse) where the columns labeled 
I1, I2, and I3 (blue ellipse) correspond to the first, second 
and third spin, respectively. The complex prefactor (1 + 
i·0) of the currently edited product operator term is shown 
in the display window at the top (yellow ellipse). By 
default, the prefactors are displayed in the form a + i·b, 
where a and b are the real and imaginary parts, 
respectively. (Alternatively, the complex prefactors can be 
defined in terms of the radial part r and the phase φ=n·π/2 
by activating the button r·ei·n·π/2.)

For example, I1z can be changed to I1x  by touching x in 
the first column. Note that also the corresponding droplet 
in the DROPS display will change instantly.

Defining the Initial State (D): Edit Operator
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The currently defined product operator terms of the initial 
density operator are listed at the bottom of the panel (red 
ellipse). In the example shown at the right, the initial state 
consists only of the term xee. The real and imaginary 
parts of the corresponding prefactor are 1 an 0, 
respectively, i.e. the first term is simply I1x.

Additional terms can be added by touching the button Add 
Term (orange ellipse). By default, this creates the new 
term (1 + i·0)·eee (short-hand notation for the identity 
operator). For example, in order to define the initial 
operator I1+ = I1x + i I1y, change the second term from 
eee to yee and its prefactor from (1 + i·0) to (0 + i·1).

In order to change the prefactor (1 + i·0) to (0 + i·1) in the 
“a + i·b” mode (yellow ellipse), cancel the real part “a” 
using the C button, activate the imaginary part by touching 
the b button and touch 1. (Alternatively, you could activate 
the “r·ei·n·π/2” mode and set n to 1). 

Now the initial density operator is set to I1x + i I1y, with the 
first product operator term (1 + i·0)·xee and the second 
term (0 + i·1)·yee (green ellipse).

Defining the Initial State (E): Edit Operator
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Defining the Initial State (F): Edit Operator

In the list of operator terms displayed at the bottom of the panel, you can activate and modify 
any desired term by a double tap. In the list, the real and imaginary parts of the prefactor of 
the activated term are highlighted by a white font on a dark grey background. The Cartesian 
product operator components and the prefactor of the activated term can be edited using the 
input panel. To cancel an activated term, touch the Delete button.

For example, to change the operator I1x + i I1y defined on the previous page to −I1z + i I1y, 
double tap the first term (red ellipse). This activates the first term (yellow ellipse) and 
displays its current prefactor and product operator components in the input panel. Touching 
the z(I1) and the +/− buttons changes the first term from  I1x  to  −I1z.
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Selecting the Pulse Sequence (A)

The initial state of the spin system is manipulated by a Pulse Sequence, 
which can be selected or created in the corresponding menu. The chosen 
pulse sequence is displayed graphically at the bottom of the screen. In 
addition, you can display a listing of the pulse sequence elements (pulses, 
delays, isotropic mixing) by selecting Display Options > List/Edit Seq.

The default pulse sequence (90°-T) consists of a 90°y pulse followed by a 
free evolution period T with a duration of 1 second. 

Rotation: The following options can be chosen.
90° Pulse: A 90° pulse with a desired phase (x, y, −x, or −y) can be chosen.
180° Pulse: A 90° pulse with a desired phase (x, y, −x, or −y) can be chosen.
z Rotation: Here, z rotations of various angles can be chosen.

Delay T: A free-evolution delay can be chosen. The basic options are T=1 s (corresponding to 
a fixed delay of 1 second) and T=1/(2·J12) which defines the duration of the delay in 
terms of the coupling constant J12 between the first and the second spin.

Tip 1: A new pulse sequence is only activated at the lowest menu level, i.e. when all required 
parameters are defined. This is confirmed by a beep.

Tip 2: As will be explained in more detail below, the pulses and delays can be easily modified 
by double tapping the corresponding displayed pulse sequence element.
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90°-T-180°-T: An echo sequence consisting of a 90°y pulse (yellow) followed 
by a free evolution period T, a 180°x pulse (red), and a second period T. 

Sequence List: In this menu, entries of a list of homonuclear and 
heteronuclear pulse sequences can be selected.

Tip: See Help > Color Code for the color code used in SpinDrops to represent pulse phases.

Selecting the Pulse Sequence (B)
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Selecting the Pulse Sequence (C): Homonuclear List
Nonsel. INEPT12: 
For J12≠0 and J13=J23=0, this sequence of duration 1/(2J12) transfers 
I1z (i.e. z magnetization of the first spin) completely to antiphase 
coherence −2I1zI2y.

0Q and 2Q Exc.: 
For J12≠0 and J13=J23=0, this sequence of duration 1/(2J12) transfers 
I1z (i.e. z magnetization of the first spin) completely to 2I1yI2x (which 
is a mixture of 0- and ±2-quantum coherence).

Isotropic Mix. 12: 
This sequence consists of a period of selective isotropic mixing (of 
the first and the second spin) with a duration 1/(2J12), which transfers 
polarization I1z via the zero-quantum term (2I1xI2y − 2I1yI2x) to 
polarization I2z.

Iso-12-23-31: This sequence demonstrates a “round trip” polarization 
transfer of I1z to I2z, to I3z, and back to I1z using an I1-I2-selective 
isotropic mixing period of duration 1/(2 J12), followed by an I2-I3-
selective isotropic mixing period of duration 1/(2 J23) and a final I1-I3-
selective isotropic mixing period of duration 1/(2 J13).
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Selecting the Pulse Sequence (D): Heteronuclear List

INEPT12: 
If J12≠0, this sequence transfers I1z completely to antiphase 
coherence 2I1zI2x, even if J13≠0 and J23≠0.

INEPT13: 
If J13≠0, this sequence transfers I1z completely to antiphase 
coherence 2I1zI3x, even if J12≠0 and J23≠0.

Ref. INEPT12: 
If J12≠0, this refocused INEPT sequence transfers I1z completely to 
I2x, even if J13≠0 and J23≠0.

Ref. INEPT13: 
If J13≠0, this refocused INEPT sequence transfers I1z completely to 
I3x, even if J12≠0 and J23≠0.

z1 -> zzz: 
If J12≠0 and J23≠0, this sequence transfers I1z completely to 4I1zI2zI3z.

DEPT-45, DEPT-90, DEPT-270:
See Help > Examples > Example 5: Spectral Editing  for a more 
detailed discussion of the DEPT sequence.
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Pulse Sequence > New Sequence > Homonuclear  creates a new sequence list for
experiments with non-selective pulses.

Pulse Sequence > New Sequence > Heteronuclear  creates a new sequence list for
experiments with spin-selective pulses.

With the sequence editing tools described in Help > Sequence Editor, it is possible to modify 
existing pulse sequences. One option to edit a given pulse sequence is simply to activate one 
of its pulse sequence elements in the graphical pulse sequence display using a double tap. 
Alternatively, Display Options > List/Edit Seq. displays the list of sequence elements, which 
can be activated and edited by a double tap. Pulse sequence elements can be modified, 
copied, pasted, dragged, deleted and created.

Additional homonuclear or heteronuclear pulse 
sequences not contained in the list of predefined 
sequences can be created using the sequence editing 
tools, which are described in more detail in 

Help > Sequence Editor.

A new pulse sequence can be efficiently built from scratch 
by touching the New Sequence button (red ellipse).

Selecting the Pulse Sequence (E): New Sequence



✕

You can build your own sequence library. 

Select Save Sequence to store the current pulse sequence and enter
a file name in the corresponding input field.

Selecting the Pulse Sequence (F): Save Sequence
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Selecting Read Sequence displays the names of the five 
most recently used pulse sequences of your library, 
which can be chosen by a single tap.

To see a list of all entries of your own pulse sequence 
library, touch “List All”. If not all entries fit on one page, 
the list can be scrolled by a swipe. From this list, a 
sequence can be selected by a double tap. The list can 
be closed by touching the “X”.

Selecting the Pulse Sequence (G): Read Sequence

By using the buttons at the bottom 
of the sequence list, it is also 
possible to save the current 
sequence and to rename or to 
delete a sequence from the list.
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/
/
/
/

The buttons below the pulse sequence interactively control the simulation of the spin dynamics:

    Stop and return to the beginning of the pulse sequence

    Play/Pause

    Slower/Faster

    Skip to the end/beginning of the current pulse or delay

    Repeat mode off/Repeat mode on

Controlling the Simulations (A)

At the right of the control buttons, the current time (here 0.460 s) and the 
total duration of the pulse sequence (here 1.091 s) is displayed (iPad only).

When a simulation is running, the acceleration factor (“Time Warp”) is 
displayed at the left of the control buttons (iPad only). For example, an 
acceleration factor of 2−3 indicates that the simulation is slowed down by a 
factor of 2−3 = 1/23 = 1/8. Touching the Slower or Faster button decreases 
or increases the acceleration by a factor of 1/2 or 2, respectively.
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Controlling the Simulations (B)

The white dot and the attached vertical line 
indicate the current time point of the 
simulation. As explained on the previous 
page, the current time point can be 
controlled using the control buttons at the 
bottom of the sequence plot.

It is also possible to control the time 
evolution directly by touching and dragging 
the white dot to the desired position.

This  allows  you  to  precisely  control  the

speed with which the DROPS display is 
changed during the pulse sequence.

For an even finer control, the pulse 
sequence display can be zoomed by 
pinching with two fingers.

Tip: The simulation should be stopped or 
paused when the current time point is 
moved manually.
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Manipulating the DROPS Display (A)
To view the three-dimensional shapes of the droplets from different perspectives, you can 
rotate, shift and zoom the DROPS display with one- or two-finger gestures (as illustrated on the 
following pages). It is also possible to change  the view angle by tilting the device (Display 
Options > Enable Parallax).
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Manipulating the DROPS Display (B)

The DROPS display can be rotated like a trackball by dragging one finger. In the example shown 
below, the DROPS display is rotated around the horizontal axis of the screen by dragging the 
finger upwards.
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Manipulating the DROPS Display (C)

The DROPS display is rotated like a trackball around the vertical axis of the screen by dragging 
the finger from left to right.
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Manipulating the DROPS Display (D)

Rotate like a steering wheel in the plane of the screen by twisting two fingers in a circular motion.
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Manipulating the DROPS Display (E)

Shift in the plane of the screen by dragging with two fingers.
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Manipulating the DROPS Display (F)

Zoom in and out with two fingers. Pinching your fingers together makes the image smaller and 
spreading the fingers apart enlarges the image.
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Manipulating the DROPS Display (G)

Restore the default view of the DROPS representation by performing a triple tap with one finger. 
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Coordinate System

In the DROPS display, a coordinate system is usually shown for reference. The axes of the 
coordinate system are labelled x, y, and z and in addition, the following colors are used to 
easily distinguish the axes:

White: z axis

Yellow: y axis

Red: x axis  
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{I1}

{I2}

{I3}

{I1,I2}

{I2,I3}

{I1,I3}

τ1

τ2

τ3

τ4
{I1,I2,I3}

{ }

DROPS Display for a Three-Spin Triangle (A)
In the standard DROPS display based on the LISA basis, the location of a droplet indicates the 
set of involved spins. The following locations are used in the default setting:
⦁ Droplets corresponding to product operator terms involving only a single spin operator

(linear terms) are located at the corners of a triangle. Each corner is labeled to indicate with 
which spin (I1, I2, or I3) it is associated.

⦁ Droplets corresponding to bilinear terms are located on the corresponding edges of the triangle.
⦁ Droplets corresponding to trilinear terms are located in the center and above the triangle.
⦁ The droplet representing a term which involves no spin operator (i.e. which is proportional to the 

identity operator) is located below  the triangle.

Examples of the DROPS display for linear, bilinear and trilinear terms and the identity operator 
are shown on the next page.
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bilinear terms trilinear terms

linear terms identity operator

1/2 E

I1z
I3y

I2x

2I1xI2z

2I2zI3z

2I1zI3y

4I1xI2yI3z

τ1

τ2

τ3

τ4

⎨

⎧

⎩

DROPS Display for a Three-Spin Triangle (B)
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DROPS Display for a Three-Spin Triangle (C)
On the previous page, the linear, bilinear and trilinear terms as well as the term proportional to the 
identity operator term were shown separately. In the standard DROPS display, these terms are 
shown simultaneously in one figure. 
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{I1} {I2} {I3}{I1,I2} {I2,I3}

{I1,I3}

τ1 τ2 τ3τ4

{I1,I2,I3}

{ }

For three-spin systems with J13=0, the droplets representing linear terms can optionally be 
positioned on a line (rather than at the corners of a triangle) by selecting Spin System > 3 Spin 
Chain. The locations of the bilinear terms, of the trilinear terms and of the term proportional to the 
identity operator are schematically indicated below.

DROPS Display for a Three-Spin Chain (A)
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bilinear terms trilinear terms

linear terms identity operator

1/2 E

I1z I3yI2x

2I1xI2z 2I2zI3z

2I1zI3y

4I1xI2yI3z

τ1 τ2 τ3 τ4

⎨⎧ ⎩

DROPS Display for a Three-Spin Chain (B)
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DROPS Display forTwo Spins (A)

For systems consisting of two spins, the DROPS display can be adapted by selecting Spin 
System > 2 Spins. The locations of the linear terms, of the bilinear term and of the term 
proportional to the identity operator are schematically indicated below.

{I1} {I2}{I1,I2}

{ }
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bilinear terms all terms

linear terms identity operator

1/2 EI1z I2x

2I1xI2z

DROPS Display forTwo Spins (B)
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DROPS Display for a Single Spin

For systems consisting of a single spin, the DROPS display can be adapted by selecting Spin 
System > 1 Spin. The term proportional to the identity operator is located below the linear term.

1/2 E

I1z
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Display Options (A)

This menu allows you to choose the desired display options.

Selecting List Prod. Ops. displays a list of the current product operator terms. 
This list can be hidden by choosing Display Options > Hide Prod. Ops. (or by 
displaying a different list).

Selecting List/Edit Seq. displays the elements of the current pulse sequence 
and allows you to edit the sequence (for details, see Help > Sequence 
Editor). This list can be hidden by choosing Display Options > Hide List Seq. 
(or by displaying a different list).

The graphical display of the current pulse sequence can be switched off by 
selecting Hide Seq. Plot. It can be switched on again by selecting Display 
Options > Show Seq. Plot.

The button Slider Steps allows you to choose either “Smooth” or “Discrete” mode for the sliders to 
set the spin system parameters. In “Smooth” mode, the parameters can be adjusted continuously, 
whereas in “Discrete” mode, they are adjusted in steps of 0.1, which helps to set e.g. a given 
coupling constant to a value of exactly 0.0 or 1.0. 

The option Enable Parallax allows you to interactively change the perspective of the DROPS 
display by simply tilting your device. This provides enhanced intuitive depth perception, which can 
be particularly helpful when looking at some of the more complex arrangements of droplets 
introduced in the following pages.
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The button Separation allows you to select one of several 
alternative advanced modes of the DROPS display in 
addition to the compact “Standard ” DROPS display mode 
(c.f. Help > Tutorial > DROPS Display). In particular, it is 
possible to partition the compact standard droplets in terms 
of coherence order p and/or rank j.

In “Standard Plane” mode, the same droplets are shown as 
in “Standard ” mode, but now all droplets - including the 
trilinear terms - are located in a single plane (in preparation 
for the other separation modes). In the example below, the 
operator 4I1xI2yI3z is shown in “Standard ” mode (left panel) 
and “Standard Plane” mode (right panel).

Display Options (B): Separation

τ1

τ2

τ4

τ3

τ4τ1 τ2

τ3
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To see the coherence orders and 
tensor ranks contained in a given 
state, the standard droplets can be 
split into sub droplets according to the 
following “Separation” options:
• absolute value of coh. order |p|, 
• coherence order p,
• tensor rank j,
• j and |p|,
• j and p.

At the right, the different separation 
modes are illustrated for the example 
of the operator (I1xI2x + I1xI2y + I1xI2z).

Display Options (C): Separation

p=0

p=1

p=2

p=−1

p=−2

p=0

p=1

p=2

p=−1

p=−2

|p|=0

|p|=1

|p|=2

|p|=0

|p|=1

|p|=2

j=0 j=1 j=2

j=0 j=1 j=2

j=0 j=1 j=2

I1

I2

I1

I2
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Display Options (D): Separation Based on Coherence Order

τ1
τ2

τ3

I1I2

I1I3

I2I3

I3

I2

I1 τ4

τ1
τ2

τ3

I1I2

I1I3

I2I3
p=2

τ1
τ2

τ3

I1I2

I1I3

I2I3

I3

I2

I1

p=−1

τ3
τ1

τ2
I1I2

I1I3

I2I3

I3

I2

I1 τ4

p=0

τ1
τ2

τ3

I1I2

I1I3

I2I3

I3

I2

I1

p=1

τ1

p=3

τ1
τ2

τ3

I1I2

I1I3

I2I3
p=−2

τ1

p=−3

τ1
τ2

τ3

I1I2

I1I3

I2I3
|p|=2

τ3
τ1

τ2
I1I2

I1I3

I2I3

I3

I2

I1 τ4

|p|=0

τ1
τ2

τ3

I1I2

I1I3

I2I3

I3

I2

I1

|p|=1

τ1

|p|=3

Schematic representation of 
droplet locations in a single 
plane (Standard Plane) or in 
multiple planes based on 
coherence order for a three-
spin system.

The planes and the droplet labels are color coded to indicate 
the different coherence levels: p=0 (red), p=±1 (orange), p=±2 
(yellow), p=±3 (blue). For example, the linear operators 
represented by the droplet I1 only contain coherence orders 0 
and ±1. Only the trilinear operators represented by droplet τ1 
can have coherence orders p in the full range −3 ≤ p ≤ 3.



✕
Display Options (E): Separation Based on Tensor Rank j

τ1
τ2

τ3

I1I2

I1I3

I2I3

I3

I2

I1 τ4
τ3

I1I2

τ1
τ2

I3

I2

I1 τ4τ1
τ3

τ2
I1I2

I1I2

I2I3 I2I3I2I3

I1I3
I1I3

I1I3

j=0 j=1 j=2 j=3

τ3

I1I2

τ1
τ2

I3

I2

I1 τ4τ1
τ3

τ2
I1I2

I1I2

I2I3 I2I3I2I3

I1I3
I1I3

I1I3

τ3

τ1
τ2

I3

I2

I1 τ1
τ3

τ2
I1I2

I1I2

I2I3 I2I3

I1I3
I1I3

τ1

τ3

τ1

τ2

I1I2

I2I3

I1I3

j=0 j=1 j=2 j=3

|p|=2

|p|=0

|p|=1

|p|=3

Schematic representation of the location of the droplets in the 
“Standard Plane” representation, in the “Rank j” display mode 
and in the “j, |p|” representation, where the standard droplets 
are split and separated based on both rank j and the absolute 
value |p| of coherence order. (For more details on the rank of 
operators, see the section „Tensor grouping in the LISA basis“ 
in Help > Math > LISA Basis). Here, the color of each circle 
indicates the rank j of the corresponding droplet and the color 
of the droplet label indicates the absolute value |p| of its 
coherence order, which is limited to the range 0 ≤ |p| ≤ j.
For example, the droplet “I1I2” representing bilinear operators 
involving spins I1 and I2 contains tensors of rank j=0 (red circle) 
with |p|=0, tensors with rank j=1 (orange circles) with |p|∈{0, 1}, 
and tensors with rank j=2 (yellow circles) with |p|∈{0, 1,2}.



✕

Display Options (F): Pointer

By choosing the option Show Pointer, touch points can be highlighted by 
orange circles.

This option is particularly useful when the SpinDrops display is projected on 
a big screen. For example during a lecture, a touch point can be used as a 
pointer to focus attention on specific items on the screen. This option can 
also help to explain the effects of touch gestures when the position of the 
fingers cannot be seen on the big screen, see example below.

touch screen

big screen



✕

Display Options (G): Show/Hide Couplings

To show the lines again, 
select Show Couplings.

By default , the J 
couplings between 
spins are indicated by 
l i nes . To remove 
these lines, select 
Hide Couplings.



✕

Color Code



✕

Color Code for Droplets (A)

Each droplets represents a complex function on a sphere (for more details, see Help > 
Mathematical Background). Any complex number c can be expressed in the form c=r exp(iφ), 
where r is the absolute value (represented by the distance from the origin of a given droplet),  
φ is the phase and exp(iφ) is the phase factor of the complex number (represented by the 
color wheel shown on the next page). The examples below show the colors of a spherical 
droplet with phase factors exp(iφ) of 1 (red), i (yellow), −1 (green) and −i (blue).

φ[deg] φ[rad]        exp(iφ)  Color   Droplet Example

    0°             0     1 Red

   90°           π/2      i         Yellow

  180°             π    −1     Green

  270°           3π/2    −i Blue



✕

Color Code for Droplets (B)

Note 1: This color wheel is slightly different from the one used in Garon et al. (2015),  where φ=π 
is cyan, rather than green. Opposing colors are used for phase factors with opposite signs: Red 
and green correspond to phase factors of 1 and −1, whereas yellow and blue correspond to the 
phase factors i and −i, respectively. 

Note 2: We are aware of the relatively high prevalence of red-green color blindness and we are 
interested in evaluating optional alternative color wheels. Please contact us at 
drops@glasersystems.de if you are interested in evaluating such alternatives.

Color wheel representing phase factors exp(iφ):

1−1

−i

i



✕

Color Code for Vectors

Linear Cartesian spin operators, such as I1x, I1y or I1z are Hermitian and can always be 
represented as three-dimensional real vectors. If linear Cartesian spin operators are multiplied 
by i,  the resulting operators  i I1x,  i I1y  or  i I1z are skew-Hermitian, which can be represented 
by three-dimensional imaginary vectors.

Real vectors are represented by red arrows 
and imaginary vectors are represented by 
yellow arrows. This is illustrated below for the 
example of the raising operator I1 += I1x + i I1y , 
for which the term I1x  is represented by a real 
vector pointing along the x axis (red arrow)  
and the term i I1x  is represented by an 
imaginary vector pointing along the y axis 
(yellow arrow). 



✕

Color Code for Pulses
The following color code is used to represent the phase of a pulse in the graphical 
representation of a pulse sequence:

     Pulse Phase          Pulse Color     Pulse Example
[Cartesian]   [deg]          [rad]

       x        0°             0 Red

 y       90°           π/2      Yellow

      −x      180°             π      Green

      −y      270°           3π/2 Blue

Rotations around the z axis and periods of isotropic mixing are indicated by grey rectangles.



✕

Properties of the
DROPS Representation



✕

The states of uncoupled spins ½ can be completely described using three-dimensional Bloch 
vectors (commonly called “magnetization vectors” in NMR). However, in the general (and 
more interesting) case of coupled spins, the Bloch vector picture is not sufficient and more 
advanced concepts based on operators (such as product operators, density operators, 
Hamilton operators etc.) have to be used. While these operators and their time evolution can 
easily be calculated and manipulated by computer programs, they are difficult to visualize. In 
the DROPS representation, operators are displayed as a set of droplets, where each droplet 
corresponds to operators involving a defined set of spins (individual spins, pairs of spins, 
etc.).

To understand the general properties of the DROPS representation and to become familiar 
with the shapes of characteristic droplets requires a little practice, but is also fun, and highly 
rewarding. It not only provides a very intuitive visualization of spin dynamics. It is also 
extremely helpful to understand basic and advanced concepts of magnetic resonance 
spectroscopy (such as coherence order, phase cycles, polarization transfer etc.) that form the 
basis of modern pulse sequences design. In the following, we summarize and illustrate the 
most important properties of the DROPS display. For the mathematical background of the 
DROPS display, see Help > Math.

Beyond Vectors: The DROPS Representation of Operators



✕
Droplets representing Linear Operators are Closely  Related to 
the Vector Picture

For a linear Cartesian operator (i.e. operators such as I1x or I1z 
which involve only a single spin) the corresponding droplet 
consists of two spheres: a positive sphere (red) and a negative 
sphere (green). As illustrated on the right, the same is true for 
sums and differences of such operators (associated with the 
same spin, e.g. I1) having real prefactors.

Such combinations of linear operators can also be represented 
as a single vector (the Bloch vector or magnetization vector in the 
case of the density operator). 

An important property of the DROPS representation is that the 
Bloch vector is inscribed in the red sphere and the base of the 
vector touches the green sphere. Hence, the orientation of the 
droplet (defined as the direction of the vector connecting the 
centers of the green and red spheres) is always identical to the 
orientation of the corresponding Bloch vector. 

For a single spin, the DROPS representation is closely related to 
the well-known vector picture. Therefore, a droplet representing 
the linear operators associated with a given spin is shown in 
transparent mode and the corresponding vector is shown 
simultaneously.

I1x

I1y

I1z

0.7 I1x + 0.7 I1y

0.3 I1x + 0.9 I1z



✕

Droplets of Cartesian Product Operators Are Real-Valued

Droplets representing standard Cartesian product operators are real and thus can have only 
the colors red (for positive values) and/or green (for negative values). The standard color 
code of the droplets is explained in Help > Color Code > Droplets.

Examples of individual Cartesian product operators involving 0 spins (term proportional to 
the identity operator E), a single spin (linear operator) and two spins (bilinear operator) are 
shown below.

I1x

I1z

1/2 E

2I1xI2z

2I1xI2y

2I1xI2x



✕

Droplets of Hermitian Operators Are Red/Green

Droplets representing Hermitian operators (corresponding to real combinations of Cartesian 
product operators) can easily be recognized because they can only have the colors red or 
green or both.
Examples of some droplets representing Hermitian operators are shown below.

2I1yI2x − 2I1xI2y 2I1xI2x + 2I1yI2y

2I1xI2x + 2I1yI2y + 2I1zI2z

2I1xI2x − 2I1yI2y 2I1xI2y + 2I1yI2x

I1xI2x + I1yI2y - 2I1zI2z



✕

Droplets of Skew-Hermitian Operators Are Yellow/Blue

Multiplying Hermitian operator by the imaginary unit i results in so-called skew-Hermitian 
operators. The corresponding droplet functions are purely imaginary. Their droplets can only 
have the colors yellow (if the imaginary part of the droplet function is positive) or blue (if the 
imaginary part of the droplet function is negative). Examples of some droplets representing 
skew-Hermitian operators are shown below.

i I1x i I1y

i 2I1xI2z i 2I1yI2z



✕
Droplets of Operators Consisting of Hermitian and Skew-
Hermitian Components

Here we present important examples of operators which are neither purely Hermitian nor 
purely skew-Hermitian, i.e. they can be decomposed into Hermitian and skew-Hermitian 
parts:

 2I1xI2z       + i 2I1yI2z 2I1+I2z   =

 I1x            + i I1y I1+         =

 I1xI2x − I1yI2y    + i (I1xI2y + I1yI2x) 2I1+I2+   =



✕

Non-Selective Rotations of Operators Simply Rotate the 
Droplets
Rotating an operator by a given angle about a given axis also rotates the corresponding droplets 
by the same angle about the same axis. This is one of the most important features of the DROPS 
representation. For example, rotating the operator 2I1xI2x − 2I1yI2y  by 45° about the z axis results 
in 2I1yI2x + 2I1xI2y and an additional rotation by 90° about the x axis results in 2I1zI2x + 2I1xI2z. 
Note that it is much more intuitive to recognize rotations based on the initial and final DROPS 
representations rather than based on the initial and final product operators.

45°z x90°

2I1xI2x − 2I1yI2y 2I1yI2x + 2I1xI2y 2I1zI2x + 2I1xI2z



✕
Characteristic Droplets of Cartesian Product Operators 
Involving Two Spins

2I1xI2x

2I1yI2y

2I1zI2z

2I1xI2y 2I1xI2z

2I1yI2x 2I1yI2z

2I1zI2y2I1zI2x

x

y
z



✕

Droplets of Cartesian Product Operators of the Form 2I1aI2a

As shown on the previous page, the bilinear product operators 2I1xI2x, 2I1yI2y, and 2I1zI2z of 
the general form 2I1aI2a with a ∈ {x, y, z} have elongated shapes along the a axis and can 
easily be recognized. They consist  of two red (positive) lobes (oriented in the direction of a 
and −a, respectively) and a small green (negative) toroidal shape around the a axis.

2I1xI2x 2I1yI2y 2I1zI2z

x

y
z



✕

Droplets of Cartesian Product Operators of the Form 2I1aI2b (A)

The operators 2I1aI2b with a≠b and a, b ∈ {x, y, z} are represented by a droplet with two 
bean-shaped lobes of opposite signs, i.e. a red (positive) lobe and a green (negative) lobe. 
As all operators can be obtained by non-selective 90° rotations e.g. from 2I1xI2y (see 
Challenge 8 in Help > Challenges), here we focus on this operator to understand the origin of 
the characteristic shape of these droplets. Note that 2I1xI2y can be expressed as a linear 
combination of the double-quantum operator DQy = I1xI2y+I1yI2x (symmetric with respect to 
an exchange of the two spins) and the zero-quantum operator  ZQy = −I1xI2y+I1yI2x (anti-
symmetric with respect to an exchange of the two spins):

2I1xI2y = DQy − ZQy = DQy + (−ZQy) = (I1xI2y+I1yI2x) + (I1xI2y−I1yI2x) 

2I1xI2y DQy = I1xI2y + I1yI2x −ZQy = I1xI2y − I1yI2x

= +
y

z

x



✕

Similar to 2I1xI2y, the antiphase operator 2I1xI2z can be expressed as a sum of a symmetric 
and an anti-symmetric term:

2I1xI2z I1xI2z + I1zI2x I1xI2z − I1zI2x

= +

y
z

x

Droplets of Cartesian Product Operators of the Form 2I1aI2b (B)



✕

2I1aI2b I1aI2b + I1bI2a I1aI2b − I1bI2a

= +

In general, an operator 2I1aI2b, where a≠b and a, b ∈ {x, y, z}, can always be written as a sum 
of the form 2I1aI2b = (I1aI2b+I1aI2b) + (I1aI2b−I1aI2b). The droplet corresponding to the 
symmetric term in the first bracket is “X-shaped” and consists of two red (positive) lobes 
oriented along the axis of the vector sum a+b (dashed red line) and two green (negative) lobes 
oriented along the axis of the vector difference a−b (dashed green line). The droplet 
corresponding to the anti-symmetric term in the second bracket consists of a red (positive) and 
a green  (negative) sphere, where the red sphere is displaced relative to the green sphere in 
the direction given by the cross product a×b (yellow arrow). In the DROPS representation of 
2I1aI2b, the red (and green) lobes of (I1aI2b+I1aI2b) and (I1aI2b−I1aI2b) merge, forming the 
characteristic droplet consisting of a red and green bean-shaped lobe.

a+b→→

a×b→→
a→

b→

a−b→→

→→
→→

→→

Droplets of Cartesian Product Operators of the Form 2I1aI2b (C)



✕

2I1aI2b

a+b→→a×b→→
a→

b→

a×b→→
a+b→→

Right-hand rule

The shape and color of the droplet representing a Cartesian product 
operators of the form 2I1aI2b, where a≠b and a, b ∈ {x, y, z}, can be 
constructed and analyzed using the following right-hand rule: 

(a)Point the thumb of your right hand in the direction of the unit 
vector a and the index finger in the direction of b. 

(b)The bisector of the angle formed by the thumb and index finger 
defines the axis of the vector sum a+b (dashed red line). This 
defines the long axis of the bean-shaped red lobe of the droplet. 
(Orthogonal to the red axis, the long axis of the green bean-
shaped lobe is oriented along the axis defined by a−b.) 

(c) Relative to the center of the droplet, the red lobe is displaced in 
the direction given by the cross product a×b (yellow arrow), 
which is given by the orientation of the middle finger of your right 
hand. (The green lobe is displaced in the opposite direction.)

→ →

→→

→→

→→

Droplets of Cartesian Product Operators of the Form 2I1aI2b (D)



✕

Droplets of Antiphase Operators, Kissing Beans (A)

Based on the rules summarized on the previous 
page, a given droplet of an antiphase operator can 
be translated back into the form of a product 
operator (see Help > Challenges). As illustrated 
below, it is even simpler to recognize which of the 
involved two single spin operators is a z operator, 
i.e. to determine if the coherence is in antiphase with 
respect to the first or the second spin. Imagine the 
red and green lobes to be a pair of “kissing beans”. 
If the “heads” of the kissing beans are tilted to the 
left (relative to the z axis), the component of the first 
spin operator is z and the component of the second 
spin is in the transverse plane (i.e. the antiphase 
operator has the form ±2I1zI2a with a ∈ {x,y}). 
Conversely, if the “heads” are tilted to the right, the 
second single spin operator is a z operator and the 
Cartesian component of the first spin is in the 
transverse plane (±2I1zI2a). In the general case of 
operators involving spins Im and In with m<n, a tilt to 
the left indicates that the Im operator is a z operator 
and vice versa.

Left tilt:

Right tilt:

y

z

x



✕

y

z

x

 2I1xI2z  2I1yI2z

  2I1zI2y  2I1zI2x

Left tilt: Antiphase coherence of spin I2 with respect to spin I1

 −2I1xI2z  −2I1yI2z

  −2I1zI2y  −2I1zI2x

Here, the “head-tilt rule” is shown for all antiphase operators involving spins I1 and I2.

(By the way, an interesting study of human head-turning asymmetry appeared in Nature 421, 711, 2003)

Right tilt: Antiphase coherence of spin I1 with respect to spin I2

Droplets of Antiphase Operators, Kissing Beans (B)



✕

Droplets of Cartesian Product Operators Involving Three 
Spins (A)

(a) 4I1xI2xI3x (b) 4I1xI2xI3y (c) 4I1xI2yI3x (e) 4I1xI2yI3z

Tri-linear Cartesian product operators are represented by up to four droplets (τ1, τ2, τ3, τ4) in the 
LISA basis. Here, the DROPS representation of characteristic Cartesian operators are displayed
for the following cases: (a) three identical components, (b-d) two identical components and (e) all 
components different.

x

z

y

(d) 4I1yI2xI3x

τ1

τ2

τ3

τ4



✕

x
y

z

4I1zI2yI3z4I1xI2yI3x

Based on the characteristic droplets 
for trilinear Cartesian Product opera-
tors shown on the previous page, the 
droplets of the remaining trilinear 
Cartesian product operator can be 
obtained by rotations around the x, y, 
or z axis (up to a possible change of 
sign, which simply corresponds to a 
change of colors). 

For example, the operator 4I1zI2yI3z 
(where the first and last components 
are identical) can be obtained from 
the given operator (c) 4I1xI2yI3x by a 
non-selective 90° rotation around the 
y axis. Hence, the DROPS represen-
tation of 4I1zI2yI3z can be  found by 
rotating each of the droplets of 
4I1xI2yI3x by 90° around the y axis.

90°y  

τ1

τ2

τ3

Droplets of Cartesian Product Operators Involving Three 
Spins (B)



✕

The droplet of an operator with well defined coherence order p can be easily recognized based 
on the following rules:

(1) Disregarding the color, the shape of the droplet with a well-defined coherence order p is 
invariant under rotations around the z axis, i.e. the shape is not changed by a z rotation.

(2) The coherence order p of a droplet can be inferred from the color of a droplet.

(2.1) A droplet  of coherence order p=0 does not change its color if it is rotated by an arbitrary 
  angle α around the z axis, as illustrated by the following two examples.

Operator p Droplet Droplet

I1 I2
+ −

0I1xI2x + I1yI2y

0

αz

αz

z Rotation

Droplet Symmetry and Coherence Order (A)



✕

Operator p Droplet

I1 I2
+ +

+1

+2

(2.2) A droplet of defined coherence order p ≠ 0 (where p is a non-zero integer with either positive 
or negative sign) is rainbow-colored. 
For positive coherence order (p>0), the colors change from red to yellow to green to blue when 
moving counter-clockwise around the droplet. 
For negative coherence order, the colors change in the opposite direction, as illustrated by the 
following examples.

Operator p Droplet

I1 I2
− −

−1

−2

I1  = I1x + i I1y
+

I1  = I1x − i I1y
−

I1 I2  I3
+ + +

I1 I2  I3
− − −+3 −3

Droplet Symmetry and Coherence Order (B)



✕

pDroplet

+1

+1

(2.3) For a non-zero, well-defined coherence order p, the absolute value |p| of the coherence 
order of a droplet is simply given by the number of rainbows encountered when moving once 
around the z axis. (Note that according to (2.2), the sign of p is given by the direction, one has to 
walk around the z axis, in order to move from red to yellow to green to blue.)

pDroplet

−1

+1

-3−2

Examples:

Droplet Symmetry and Coherence Order (C)



✕

(π/2)z = 90°z  

(π)z = 180°z  

(3π/2)z = 270°z  

(2π)z = 360°z  

(2.4) A droplet of coherence order p does not change its appearance if it is rotated by integer 
multiples of  2π/p around the z axis. In the example shown below, p=+1 and hence rotations 
by integer multiples of 2π/(+1)= 2π =360° leave the droplet invariant.

p=+1

Droplet Symmetry and Coherence Order (D)



✕

As stated in (2.4), a droplet of coherence order p≠0 does not change its appearance if it is rotated 
by integer multiples of  2π/p around the z axis. (Note that for p=0, the droplet can be rotated by 
any angle around the z axis without changing its shape or color, as stated in properties (1) 
and (2.1).) This is illustrated by the examples shown below for well-defined coherence orders 
p of  0, +1, +2, and +3.

p=0

p=+1

p=+2

p=+3

Invariant under any z rotation.

Invariant under ±360°z, ±720°z, …

Invariant under ±120°z, ±240°z, ±360°z,…

Invariant under ±180°z, ±360°z, …

Droplet Symmetry and Coherence Order (E)



✕

(2.5) Hermitian operators containing a mixture of coherence orders ±p (such as ±2) with |p|≠0, it is 
still true that the corresponding droplets do not change their appearance if they (or the 
corresponding operators) are rotated by integer multiples of  2π/p = 360°/p around the z axis. 
This is illustrated by the examples shown below for coherence orders p of  ±1, ±2, and ±3.

Droplet Symmetry and Coherence Order (F)

p=±1

p=±2

p=±3

360°

180°

120°

z

z

z

Invariant under ± 360°z, ± 720°z, …

Invariant under ± 180°z, ± 360°z, …

Invariant under ± 120°z, ± 240°z, …



✕

(2.6) Hermitian operators corresponding to a mixture of coherence orders ±p (such as ±2) with |p|
≠0, change sign if they are rotated by 360°/(2·p) around the z axis. Hence, after the rotation the 
shape of the droplet is unchanged but green lobes are now where corresponding red lobes 
were before the rotation. This is illustrated by the examples shown below for coherence 
orders p of  ±1, ±2, and ±3.

Droplet Symmetry and Coherence Order (G)

p=±1

p=±2

p=±3

360°/(2·(±1)) = ±180°  z rotation:

360°/(2·(±2)) = ±90°  z rotation:

360°/(2·(±3)) = ±60°  z rotation:

180°z

90°z

60°z



✕

Pulse Sequence Editor



✕

Pulse Sequence Editor

With a little practice, it is easy to modify 
existing sequences or to build a new pulse 
sequence from scratch using the sequence 
editor. New sequence elements can be 
created and existing sequence elements can 
be changed, multiplied (copy/paste) or moved 
to different positions in the sequence. In order 
to change or multiply a sequence element, it 
needs to be activated.

Activation of a pulse sequence element: Sequence elements (pulses or delays) can be 
activated by a double tap. In the example shown here, sequence element #3 (a 180°x 
pulse) has been activated (orange ellipse). You can also activate a sequence element by a 
double tap in the sequence plot. (If the sequence plot is not visible at the bottom of the 
screen, select  Display Options > Plot Sequence.) The activation of a sequence element 
opens an associated input panel.

Modification of a sequence element: Using the associated input panel of an activated 
sequence element allows you to change a delay to a pulse or vice versa (green ellipse), 
modify the flip angle (blue ellipse) and phase (magenta ellipse) of a pulse, or to change the 
duration of a delay. The duration of delays can be defined in absolute time units (“s”, “ms”, 
“μs”) or in multiples of the inverse coupling constants, e.g. 0.5/J12=1/(2 J12).



✕

You can build a new pulse sequence using the sequence editor. Let’s assume you want to 
create the homonuclear sequence 

                                            90°y - 250 ms - 180°x - 250 ms.

Choose New Sequence > Homonuclear (red ellipse). This will display the Sequence List panel 
(orange ellipse). By default, the new sequence consists of a single entry, a Delay of 1 second 
(yellow ellipse). The current list entry can be modified by the associated input panel (green 
ellipse), which is displayed at the left of the sequence list. To change the delay to a pulse, 
touch Pulse (blue ellipse).

New Homonuclear Sequence (A)



✕

The default pulse is a 90°x. In order to change it to 
90°y, touch y (red ellipse).

This changes the entry of the sequence list to 90°y 
(orange ellipse). In order to add another entry to the 
Sequence List, touch the  “+” button (yellow ellipse).

This creates a second entry in the sequence list, which 
by default is a Delay of 1s (green ellipse). The dark 
background of the second list entry indicates that this 
is the “active” list entry. (Tip: An inactive list element 
with a white background can be activated by a double 
tap). To change the delay from 1s to 250 ms = 0.25 s, 
enter “.25” in the input panel (blue ellipse).

New Homonuclear Sequence (B)



✕

Entering “.25” in the input panel changes the second 
list entry to 250 ms. (Alternatively, you could enter 
“250” and touch “ms” to achieve the same result.)

Add a third list entry by touching the “+” button (yellow 
ellipse) and change it to a180°x pulse. 

Finally, add another delay of 250 ms by creating a new 
list entry using the “+” button and changing the entry to 
250 ms as before.

This completes the creation of the sequence 
90°y - 250 ms - 180°x - 250 ms.

Tip: To close the input panel, touch the OK button (red 
ellipse).

Tip: Explore also alternative ways to create the same 
pulse sequence. Additional editing tools include Copy, 
Paste and the option to move pulse sequence 
elements to a new position by dragging the position 
number of the sequence element (orange ellipse).

New Homonuclear Sequence (C)



✕

New Heteronuclear Sequence (A)

To create a new heteronuclear sequence with spin-selective pulses, select New Sequence > 
Heteronuclear (red ellipse). As in the homonuclear case, this will display the Sequence List 
panel (orange ellipse) and by default the new sequence consists of a Delay of 1 s (yellow 
ellipse). To change the delay to one (or several) selective pulses, touch Pulse (blue ellipse) on 
the input panel (green ellipse).



✕

In the heteronuclear case, the default pulse is 90°x(I1), 
i.e. a spin I1-selective 90°x pulse (red ellipse). 

Suppose the first pulse sequence element should be an 
I1-selective 90°y pulse which is applied simultaneously 
with an I3-selective 90°−y pulse.

To create this pulse sequence element, first select 
phase “y” for the I1-selective 90° pulse (orange ellipse). 
Then select 90° for the flip angle of the I3-selective 
pulse (yellow ellipse) and finally select phase “−y” for 
this pulse (green ellipse).

As shown in the Sequence List, (blue ellipse), the first 
sequence element consists of a simultaneous 90°y(I1) 
and a 90°−y(I3) pulse.

Tip: Rather than building pulse sequences from 
scratch, you can also edit existing sequences by 
choosing Display Options > List/Edit Seq. or by 
“activating” a desired element of the graphically 
displayed pulse sequence by a double tap.

New Heteronuclear Sequence (B)



✕

Modifying an Existing Pulse Sequence (A)
Let us consider the sequence  Pulse Sequence > Sequence List > Heterouclear > z1−> zzz
shown graphically below. Pulses that act selectively on spins I1, I2 or I3 are displayed in the 
first, second or third row, respectively.

It is also possible to display a list of the individual 
pulse sequence elements by choosing Display 
Options > List/Edit Seq. (see list shown at the right).

This heteronuclear pulse sequence consists of 
seven pulse sequence elements, which are 
consecutively numbered in the left column of the 
list. Elements 1, 3, 5, 7, and 9 are spin-selective 
pulses, where the first, second, and third column 
corresponds to I1-, I2-, and I3-selective pulses. 
Elements 2, 4, 6, and 8 are delays.



✕

In order to modify a given pulse sequence element, it must be “activated”, which can be 
achieved either by double tapping with a single finger the pulse sequence element in the 
Sequence List or by double tapping it in the sequence plot:

or

As shown on the next page, the activated pulse sequence element (in this example, element 
5) is highlighted in the Sequence List by white letters on a dark background and in the 
sequence plot by bold white lines (see next page).

Modifying an Existing Pulse Sequence (B)



✕

In the example, the highlighted “active” 
pulse sequence element is indicated by 
dark and light blue ellipses in the 
sequence list and in the sequence plot, 
respectively.

The associated input panel (red ellipse) 
allows you to modify the active pulse 
sequence element.

For example, the I2-selective 90°y pulse 
can be eliminated by choosing a flip 
angle of 0° (green ellipse).

Modifying an Existing Pulse Sequence (C)



✕

The modification is instantly displayed 
both in the sequence list and in the 
sequence plot (dark and light blue 
ellipses, respectively).

It is also possible to choose a flip 
angle different from the most common 
values (90° or 180°) by touching 
“α” (green ellipse). As shown on the 
next page, this will open an additional 
input panel that allows you to 
numerically enter a desired flip angle.

Modifying an Existing Pulse Sequence (D)



✕

Touching the “α” button 
(green ellipse) opens the 
additional input panel (yel-
low ellipse).  The display 
“90°x(I1)” at the top (orange 
ellipse) shows the current flip 
angle (90°) of the spin I1-
selective pulse with phase x.

For example, we can change 
the flip angle to 60° by 
touching the corresponding 
keys of the input panel. The 
result is shown on the next 
page.

Modifying an Existing Pulse Sequence (E)



✕

The new flip angle of 60° is 
displayed numerically in the 
Sequence List as well as 
graphically in the sequence 
plot (orange ellipses).

The additional input panel at 
the left can be closed with the 
OK button (green ellipse). 
The input panel in the center 
can  be  closed  and  the 
currently  “active” pulse 
sequence element  (blue 
ellipses) can be  “deactivated” 
by touching the OK button of 
the center panel (yellow 
ellipse), see next page.

Modifying an Existing Pulse Sequence (F)



✕

Moving Sequence Elements to Different Positions

A sequence element (blue ellipse) is moved by touching its entry number (red circle) and 
dragging it to the desired new position. In the example shown above, the I1-selective 60°x 
pulse is moved from position #5 to position #8 of the sequence.



✕

Copy/Paste
An activated pulse sequence element can be copied and pasted using 
the corresponding buttons at the bottom of the sequence list. Initially, 
the Copy and the Paste buttons are inactive (indicated by a white font, 
see red ellipse).

Double tapping a sequence element activates not only the selected 
sequence element (indicated by a white font on dark background, see 
orange ellipse) but also makes the Copy button active (indicated by 
changing the white font to black, see yellow ellipse). 

Touch the Copy button to store the active pulse sequence element in an 
internal buffer. If the buffer is loaded, the Paste button become active 
(indicated by a black font, see green ellipse).

Touching the Paste button inserts the stored sequence element after 
the currently activated sequence element. (If no sequence element is 
activated, the stored sequence element is inserted at the end of the 
sequence.) 

In the example shown on the right, the goal was to copy element #1 and 
to insert it after element #2. This is achieved by activating element #1 
and copying it to the buffer. Then element #2 is activated (blue ellipse) 
and the stored sequence element is pasted after element #2 at position 
#3 (magenta ellipse).



✕

Deleting Sequence Elements

Pulse sequence elements can be deleted by touching the Delete button (red ellipse). 

If a sequence element is activated (blue ellipse), the Delete button removes the activated 
sequence element from the list. (Remember that a sequence element can be activated by a 
double tap.)

If no element is activated in the sequence list (yellow ellipse), the last sequence element (orange 
ellipse) of the list is deleted.



✕

Display and Duration of Pulses

As discussed in the introduction, the simulations in the current version of the 
SpinDrops app are assuming ideal pulses, i.e. the effects of frequency offsets 
and couplings are not taken into account during the pulses.

In order to make the pulses visible in the sequence plots and to be able to 
distinguish pulses of different flip angles based on the width of the displayed 
rectangles, a low default pulse amplitude (Rabi frequency) of only 10 Hz is 
assumed. Thus, the duration of a 360° pulse is 1/(10 Hz) = 0.1 s = 100 ms, 
the duration of a 180° pulse is 50 ms, and the duration of a 90° pulse is 25 
ms. However, as frequency offsets and couplings are neglected during the 
duration of the pulses in the simulations, the pulses have the same effect as 
ideal delta pulses of negligible duration.

Additional care has to be taken in the case of heteronuclear experiments, 
where pulses can be selectively applied to individual spins.  In this case, it is 
important to remember that during the duration of a pulse, offsets and 
couplings do not evolve, even if a particular spin is not irradiated. This is 
indicated by a dark grey rectangle. Also note that simultaneously applied 
pulses with different flip angles are displayed with different widths and are 
centered in the sequence plot. The example at the right shows a zoom of the 
simultaneous 180°x (red rectangle) and 45°y (yellow rectangles) pulses in the 
DEPT-45 sequence. Note the dark grey rectangle indicating the pulse 
duration, which has been enhanced here for better visibility.



✕

Examples



✕

Let us start with a simple example of an 
uncoupled spin, for which the DROPS display 
is equivalent to the well-known vector 
representation. Selecting Spin System  > 1 
Spin should result in the display shown on the 
top. By default, the initial state is I1z 
(representing “z magnetization”). The red 
vector in the transparent red sphere should 
point along the z axis.

By default, initially, the single spin is seen 
approximately from the positive z axis. If you 
prefer, you can choose a different perspective. 
For example, touching the center of the 
screen and moving the finger upward, results 
in the following display. (Using one finger, you 
can rotate the display like a trackball. For 
more finger gestures, see Help > Tutorial.)

Example 1: Excitation and Precession of a Single Spin (A)



✕

In order to see the currently displayed product 
operator, select Display Options > List Prod. 
Ops.

As shown at the top, the list of product 
operators representing the current state 
contains only the term zee, corresponding to 
I1z. Its coefficient has no imaginary part and 
the real part is 1.

(If a different initial state is shown, select 
Initial State  >  I1z.)

Example 1: Excitation and Precession of a Single Spin (B)



✕

Also by default, the pulse sequence should be 
a 90°y pulse followed by a delay of 1 second. 
The pulse sequence is displayed schematic-
ally at the bottom of the screen, where the 
90°y pulse is represented by a yellow 
rectangle.

In order to see the detailed parameters of the 
currently selected pulse sequence, select 
Display Options  >  List/Edit Seq. 
This displays the list shown above. As 
expected, it consists of two elements: A 90°y 
pulse followed by a delay of 1 second. If a 
different pulse sequence is listed, select Pulse 
Sequence  > 90°-T  > T=1s.

Example 1: Excitation and Precession of a Single Spin (C)



✕

By default, the offset frequency of the spin I1 
is  ν1 = 1 Hz. This can be checked (or 
modified) by selecting Spin System > 
Parameters. 

The displayed parameter and its current value 
is indicated above the slider: “v1 =  1 Hz”. The 
allowed range of the values (here from −2 to 
2) is indicated below the slider.

Example 1: Excitation and Precession of a Single Spin (D)



✕

By pressing the play button at the bottom of 
the screen, you start the simulation of the 
pulse sequence and immediately see the 
effect on the screen. The pulse flips the spin 
by 90° around the y axis from z to x. During 
the delay, the spin rotates (precesses) around 
the z axis. The current time point is indicated 
by a white circle and a vertical white line. 

At the end of the sequence, the spin points 
along the x axis. As described in more detail in 
the tutorial, the buttons at the bottom of the 
screen allow you to interactively control the 
simulation. For example, you can slow down 
or speed up the simulation, or run the 
simulation in a loop. After stopping or pausing 
the simulation, you can move the current time 
point also by dragging it with your finger.

Example 1: Excitation and Precession of a Single Spin (E)



✕

Note that you can also change the offset 
frequency (i.e. the rotation frequency during 
the delay) interactively while the simulation is 
running and you immediately see the effect of 
the parameter change. For example, for 
v1=0.8 Hz, the magnetization vector at the 
end of the delay does not point along the x 
axis as was the case for v1=1 Hz.

Discussion: In this simple example, you 
learned how to define a spin system, the spin 
system parameters, the initial state, the pulse 
sequence and how to run and control the 
simulation. As we considered a single, 
uncoupled spin, the spin dynamics can be 
completely described by the well-known 
vector representation. In addition to the 
“magnetization vector”, the corresponding  
single-spin droplet (consisting of a red and 
green sphere) of the DROPS representation 
was displayed. Although this did not provide 
any additional information in this case, it is 
interesting to note that at all times, the 
magnetization vector is parallel to the 
corresponding droplet, i.e. to the axis formed 
by the centers of the green and red spheres. 
Hence, for the simple case of an uncoupled 
spin 1/2, the vector picture can be viewed as a 
special case of the DROPS representation. 
However, in contrast to the vector picture, the 
DROPS representation is not limited to 
uncoupled spins.

Example 1: Excitation and Precession of a Single Spin (F)



✕

Suggestions for further exploration:

Predict the effect of the pulse sequence for different initial states and check your 
prediction by running the simulation.
Examples:

(I) Observe the effect of the pulse sequence for the initial state I1x rather than I1z.
(II)  Observe the effect of the pulse sequence for the initial state I1y.

What is the effect of the phase and/or flip angle of the excitation first pulse is modified?
Selecting Display Options > List/Edit Seq. provides the Sequence List, which in this case 
consists of two sequence elements: (1) The pulse 90°y and (2) the Delay 1s. If you 
double tap on 90°y, a sub menu opens in which you can change the flip angle and the 
phase of the pulse. In most cases, the pulses of interest will be 90° or 180° pulses, which 
can be chosen directly. If you would like to change the 90°y pulse e.g. to a 45°y pulse, 
select Other Pulse and enter the desired flip angle in the displayed number pad.

Example 1: Excitation and Precession of a Single Spin (G)



✕

Example 2: Rotation of I + Around the z Axis (A)

In this example, we use the SpinDrops app to 
visualize the droplet of the +1-quantum 
coherence term I1+= I1x + i I1y  and to see its 
evolution under z rotations. Choose Spin 
System > 1 Spin and select Initial State > 
I1(+). To see the corresponding Cartesian 
product operators, select Display Options > 
List Prod. Ops.

The left column of the list indicates the 
operator terms using the short-hand three-
letter code (see Help > Tutorial ). On the right, 
the real and imaginary parts of the 
corresponding coefficients are displayed, 
which in general can be complex.



✕

In the vector picture, the state I1+= I1x + i I1y is 
represented by two vectors: A real vector (red) 
pointing along the x axis and an imaginary 
vector (yellow) pointing along the y axis.

The corresponding droplet is a combination of 
the droplet for the operator I1x (consisting of a 
red and a green sphere) and the droplet for 
the operator iI1y (consisting of a yellow and 
blue sphere).

 I1x                + i I1y I1+                             =

Example 2: Rotation of I + Around the z Axis (B)



✕

Select Pulse Sequence > Rotation > z 
Rotation > 360°(z) and touch the play button        
(      ) to start the rotation. You can slow down 
or speed up the rotation by touching the 
corresponding control buttons (         or          ).

If the repeat mode is off (indicated by       ), 
you can turn it on by touching the        symbol. 
(The      symbol indicates that the repeat 
mode is on). This will result in a continuous 
rotation of the droplet around  the z axis.

90°z0°z 180°z 270°z 360°z

Example 2: Rotation of I + Around the z Axis (C)



✕

Suggestions for further exploration:

Observe the effect of the z rotation for different initial states, such as I1− or I1x.

Apply different rotations (e.g. around the x or y axis) using pulses.

Example 2: Rotation of I + Around the z Axis (D)



✕

Example 3: Weak Coupling Evolution in a Two-Spin System (A)

Select Spin System > Two Spins and choose 
I1x as the initial state by selecting Initial State 
> I1x. Select Pulse Sequence > Delay T > T = 
1 s. In Display Options > List Sequence 
double tap the delay and set it to 2 s. Change 
the spin system parameters to v1=0 Hz, 
v2=0Hz, J12=1 Hz (if the parameter sliders 
are not visible at the top right of the screen, 
select Spin System > Parameters). Touch the 
play button to run the simulation.

Initially, the droplet representing the linear 
spin operators of I1 shrinks and a new droplet 
emerges between I1 and I2, corresponding to 
the antiphase operator 2I1yI2z (confirm using 
Display Options > List Prod. Ops. or using the 
r igh t -hand ru le ) . A f te r 0 .5 seconds 
(corresponding to 1/(2 J12), the I1 spin droplet 
has completely vanished and the bilinear 
{I1,I2} droplet has reached its maximum size.



✕

t = 0.5 s

t = 0 s

t = 1 s

t = 1.5 s

t = 2 s

After 1 second (corresponding to 1/J12), the 
{I1,I2} droplet vanishes and the I1 droplet 
reaches its maximum size again. However, 
note that the sign of the I1 droplet (and of the 
magnetization vector) is inverted compared to 
the initial state at t = 0 s. After 2 seconds 
(corresponding to 2/J12), the initial state I1x is 
reproduced. If the simulation is set to repeat 
mode, this will result in a continuous 
oscillation between the two droplets.

This simulation visualizes the well-known 
evolution of I1x in the presence of a J coupling 
(in the weak coupling limit), which is given by 
I1x cos(π J12 t ) + 2I1yI2z sin(π J12 t ). For J12 = 
1 Hz and t = 0.5 s, the argument (π J12 t )=π/2, 
i.e. the state is given by I1x cos (π/2) + 2I1yI2z 
sin (π/2) = 2I1yI2z. For t = 1 s, 1.5 s, and 2 s, 
the state is −I1x, −2I1yI2z, and I1x, respectively.  

= 1/(2 J12)

= 1/J12

= 3/(2 J12)

= 2/J12

Example 3: Weak Coupling Evolution in a Two-Spin System (B)



✕

Suggestions for further exploration:

(I) What happens if the offset frequency v1 is set to non-zero values?
(II)  What is the effect if the offset frequency v2 is set to non-zero values?
(III) What happens if the initial state is I1z?

Example 3: Weak Coupling Evolution in a Two-Spin System (C)



✕

In this example, we illustrate the effect of 180° 
pulses on the evolution of a two-spin system. 
Select Spin System > 2 Spins  and  set J12 = 
1 Hz using the parameter slider (Spin System 
> Parameters). 

We consider the evolution of the initial state 
I1x  (select Initial State > I1x)  during  a delay 
T = 1/(2 J12) = 0.5 s (select Pulse Sequence > 
Delay T > T=1/(2·J12). 

The Figure on the right shows the DROPS 
visualization  of  the product operator terms at 
t = 0 s,  at  t = 1/(4 J12) = 0.25 s,  and  at  t = 
1/(4 J12) = 0.5 s for the case where both 
offset frequencies are zero (ν1 = ν2 = 0 Hz).

Example 4: Refocusing of Offset and Coupling Effects (A)

t = 0 s

t = 1/(4 J12)

t = 1/(2 J12)

In this case, initial x magnetization of the first spin (I1x) evolves under the weak coupling 
Hamiltonian during the delay T = 1/(2 J12) completely to the anti-phase operator 2I1yI2z. In the 
following, we simulate the resulting final state without and with additional 180° pulses in the center 
of the delay T, assuming a non-zero offset frequency of the first spin (ν1 = 0.5 Hz).



✕

t1

t2

t3 

t4

t1 t2 t3 t4t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t3 t4 

I 2
I 1

(a) (b) (c) (d)

For ν1 = 0.5 Hz and J12 = 1 Hz, simulations are shown for   t1 = 0 s,   t2 = T/2 = 1/(4 J12) = 0.25 s, 
t3 = t2 (assuming a negligible duration of the180° pulses) and t4 = T = 1/(2 J12) = 0.5 s. I1x evolves 
(a) to −2I1xI2z in the absence of pulses during the delay T,
(b) to I1x if a spin I1-selective 180°x pulse is irradiated at T/2,
(c) to I1y if a spin I2-selective 180°x pulse is irradiated at T/2,
(d) to 2I1yI2z if I1- and I2-selective 180°x pulses are irradiated at T/2.

Example 4: Refocusing of Offset and Coupling Effects (B)



✕

ν1 = 0.0 Hz

ν1 = 0.5 Hz

ν1 = 1.0 Hz

ν1 = 1.5 Hz

t4t4 t4 t4 

I 2
I 1

The results of the previous page reflect the well-known fact that in case (a), offset and coupling 
terms of the Hamiltonian are active. In (b), the effect of the coupling and of the offset ν1 are 
refocused. In (c), the effect of the coupling and of the offset ν2 are refocused but ν1 is active. In 
(d), the simultaneously irradiated I1- and I2-selective 180°x pulses at T/2 (corresponding to a non-
selective 180°x pulse for the two-spin system) refocus frequency-offset effects but the coupling 
evolution is active. For the initial state I1x, this is confirmed by the resulting final state of the system 
at t4 = T = 1/(2 J12) = 0.5 s for different offsets ν1 of 0 Hz, 0.5 Hz, 1 Hz and 1.5 Hz.

(a) (b) (c) (d)

Example 4: Refocusing of Offset and Coupling Effects (C)



✕

Suggestions for further exploration:

Has the offset ν2 of the second spin an effect in the experiment considered in the given 
example? What if we start with the initial state I2x instead of I1x?

How would the results change if 180°y pulses rather than 180°x pulses would be used in 
the example?

Explore the effects of selective and non-selective 180° pulses in three-spin systems.

Explain the results of the refocusing experiments using the product operator formalism.

Example 4: Refocusing of Offset and Coupling Effects (D)



✕

Example 5: Spectral Editing (A)

The DEPT experiment (Distortionless Enhancement of Polarization Transfer) makes it possible 
to distinguish C, CH, CH2, and CH3 groups. The 1H spins are excited and the amplitude and 
sign of the detected 13C spin depends on the number of attached protons.

The basic pulse sequence of the DEPT experiment has the form
                         90°x(H) - T - 180°x(H),90°x(C)  - T - θy(H),180°x(C)  - T
where the flip angle θ of the editing 1H pulse is 45°, 90° or 135° and the delay T is 1/(2 JCH). 
The experiment relies on polarization transfer and only signal originating from 1H polarization 
is detected on the 13C frequency. Hence, the spins of 13C atoms without attached 1H atoms do 
not yield any detectable signal. Predicting the 13C signals of CH, CH2, and CH3 is less simple.

As up to three spins 1/2 can be considered in the current version of SpinDrops, it is possible 
and instructive to simulate the relative size and sign of of the final 13C magnetization (and 
hence of the relative size and sign of the corresponding 13C NMR signal) for CH, CH2 groups. 
In the following, we will assume that spin I 2 represents a 13C spin and spins I 1 and I 3 
represent 1H spins:

CH system:                                   with J12 ≠ 0   and   J13 = J23 = 0.I 1 I 2

I 1 I 2 I 3CH2 system:                                      with J12 = J23 ≠ 0   and   J13 = 0.



✕

I 1

I 2

I 3

Example 5: Spectral Editing (B): DEPT-45

CH2 system

CH system

DEPT-45

Selecting Spin System > 3 Spin 
State > I1z). For the CH2 system, 
set J12  = 1 Hz and J23  = 1 Hz 
and define the initial state as 
I1z+ I3z ( In i t ia l State > Edi t 
operator).   Select Pulse 
Sequence > Sequence List > 
Heteronuclear > DEPT-45 and run 
the simulation.
Note that in both cases the final 
magnetization vector of spin I2 is 
pointing in the positive x direction 
(orange ellipses).

Selecting Spin System > 3 Spin Chain automatically sets J13 = 0. To simulate the CH system, set 
J12  = 1 Hz  and  J23  = 0 Hz  (Spin System > Parameters)  and define the initial state as I1z (Initial



✕

I 1

I 2

I 3

Example 5: Spectral Editing (C): DEPT-90

CH2 system

CH system

DEPT-90

of the editing  pulse has changed 
from 45° to 90° (yellow ellipses). 

In DEPT-90, the final magnetiza-
tion vector of spin I2 is pointing in 
the positive x direction for CH 
(orange ellipse). However, for CH2 
the final magnetization vector of 
spin I2 is zero (orange ellipse). 
This results in positive 13C-NMR 
signals for CH groups but no 13C-
NMR signals for CH2 groups.

Select Pulse Sequence > Sequence List > Heteronuclear > DEPT-90 and run the simulation. 
Note  that  compared  to  the DEPT-45  sequence  shown  on  the  previous page, the flip angle θ



✕

I 1

I 2

I 3

Example 5: Spectral Editing (D): DEPT-135

CH2 system

CH system

DEPT-135

In this case of DEPT-135, the final 
magnetization vector of spin I2 is 
pointing in the positive x direction 
for the CH system, whereas it is 
pointing in the negative x direction 
for the CH2 system (orange 
ellipses). This results in positive 
and negative 13C-NMR signals for 
CH and CH2 groups, respectively.

Selecting Pulse Sequence > Sequence List > Heteronuclear > DEPT-135 changes the flip angle 
θ of the editing  pulses to 135° (yellow ellipses).



✕

Example 5: Spectral Editing (E)
Suggestions for further exploration:

What are the expected relative signal amplitudes for CH and CH2 groups in DEPT-45, 
DEPT-90 and DEPT-135? (Tip: Remember that you can always display the coefficients of 
the product operator terms by selecting Display Options > List Prod. Ops.)

Does the final DROPS display (and hence the final state of the spin system) depend on 
the offset frequencies ν1, ν2, ν3?

Which product operator terms are created at the end of DEPT-45, DEPT90, and 
DEPT-135 in addition to the desired magnetization of spin I2?

Calculate the effect of the DEPT experiments analytically using the standard product 
operator formalism and compare the results with the DROPS simulations. What are the 
expected relative signal amplitudes for CH3 groups in DEPT-45, DEPT-90 and 
DEPT-135?



✕

Example 6: TOCSY Transfer in a Two-Spin System (A)

In this example, we explore the transfer of x 
magnetization in the isotropic mixing period of 
TOCSY experiments, where isotropic mixing 
conditions are created by a multiple-pulse 
sequence. 
Select Spin System > Two Spins and choose 
I1x as the initial state by selecting Initial State 
> I1x. Choose the isotropic mixing sequence  
for two spins by selecting Pulse Sequence > 
Sequence List > Homonuclear > Isotropic Mix. 
12.

The isotropic mixing period is indicated by a 
grey rectangle. Set the coupling J12 to 1 Hz. 
(Here, the offset frequencies v1 and v2 are 
irrelevant as they are effectively suppressed 
by the isotropic mixing sequence.) 
Interestingly, after 0.5 seconds, corresponding 
to t = 1/(2 J12), the initial state I1x has turned 
completely into I2x, i.e. x magnetization has 
been fully transferred from the first to the 
second spin).



✕

Under the isotropic mixing Hamiltonian, the initial 
state    ρ(0) = I1x    evolves to 
       ρ(t ) = I1x cos2(π J12 t ) 

                                   + (2I1yI2z − 2I1zI2y) cos(π J12 t ) sin(π J12 t ) 

                                   + I2x sin2(π J12 t ).
This is depicted on the right, where the isotropic 
mixing period was extended to 1 s (by selecting 
Display Options > List/Edit Seq., double tapping 
Hiso12, and changing 0.5/J12 to 1/J12.)

For t = 1/(4J12) (corresponding to t = 0.25 s for J12 = 
1 Hz), the argument (π J12 t ) = π J12/(4J12) = π/4 and 
cos(π J12 t ) = sin(π J12 t ) = 1/√2. Hence the state is  
0.5 I1x  + (I1yI2z − I1zI2y) + 0.5 I2x and the bilinear 
droplet located between I1 and I2 reaches its 
maximum value.
For t = 1/(2J12) = 0.5 s, (π J12 t ) = π J12/(2J12) = π/2 
and cos(π J12 t ) = 0, sin(π J12 t ) = 1. Hence, the 
state is I2x, i.e. the initial x magnetization has been 
fully transferred from spin I1 to spin I2.
For t = 1/J12 = 1 s, the state is again I1x and the 
cycle starts anew.

t = 0 s

t = 0.5 s

t = 1 s
I1 I2

t = 0.25 s

t = 0.75 s

I1x

(I1yI2z − I1zI2y)

I2x

−(I1yI2z − I1zI2y)

I1x

Example 6: TOCSY Transfer in a Two-Spin System (B)



✕

In the standard SpinDrops representation, a non-selective 180y° pulse simply rotates the 
droplets by 180° around the y axis. This is illustrated here for the initial operator        

Example 7: Inversion of Multiple-Quantum Coherence (A)

(select Initial State > MQ (+/- ops) > 3Q(I1,I2,I3) > 2*I1(+)*I2(+)*I3(+) ).I1 I2  I3
+ + +

In addition to the initial orientation of the droplet, the snapshots show its orientations after 
rotations of 45°, 135°, and 180° around the y axis.

The fact that this operation also inverts the coherence order from p=+3 to p=−3 can be 
inferred from the direction of the rainbow colors of the initial and final droplet orientations. 
However, this can be seen more directly by separating the droplet according to coherence 
order p.



✕

On the previous page, „Standard Plane“ display mode was selected. To separate the droplets 
according to coherence order p, choose Display Options > Separation > Coh. Order p. In this 
display mode, the change of coherence order from p=+3 to p=−3 (via all the intermediate 
coherence orders) can be clearly followed. In Coh. Order p display mode, the droplets are 
arranged in planes with coherence order p=3 at the top and p=−3 at the bottom, as explained 
in Help > Tutorial > DROPS Display. The red plane in the center corresponds to p=0.

Example 7: Inversion of Multiple-Quantum Coherence (B)

0°             45°   135°    180°



✕

Example 7: Inversion of Multiple-Quantum Coherence (C)

Suggestions for further exploration:

Study the effect of pulses and delays on various initial states of pure or mixed coherence 
orders.

Test the different display modes with droplet separations based on coherence order p, the 
absolute value of coherence order |p| and/or tensor rank j. 



✕

Challenges



✕

Explore how to define desired states

Challenge 1: 

Create the following droplets using the menu  Initial State > MQ(x/y ops.)

(a) (b) (c) (d)



✕

Solution:  

(a)  0Q(I1,I2) > 0Qx(I1,I2)     (b)   1Q(I1,I2) > 2*I1z*I2y

(c)   2Q(I1,I2) > 2Qy(I1,I2) (d)  3Q(I1,I2,I3) > 2*3Qx(I1,I2,I3)

Explore how to define desired states

Challenge 1: 

Create the following droplets using the menu  Initial State > MQ(x/y ops.)

(a) (b) (c) (d)



✕

Challenge 2: 

Create the following droplets using the menu  Initial State > MQ(+/− ops.)

(a) (b) (c)

Explore how to define desired states



✕

Challenge 2: 

Create the following droplets using the menu  Initial State > MQ(+/− ops.)

(a) (b) (c)

Solution:  

(a)   1Q(I1) > I1(−)       (b)   2Q(I1,I2) > I1(+)*I2(+)    (c)   3Q(I1,I2,I3) > 2*I1(-)*I2(-)*I3(-)

Explore how to define desired states



✕

Challenge 3: 

Create the following states using the menu  Initial State > MQ(+/− ops.)

(a)     (b) (c)I1 I2
+ −

I1 I2
− +

2I1 I2z
+

Explore how to define desired states



✕

Challenge 3: 

Create the following states using the menu  Initial State > MQ(+/− ops.)

(a)     (b) (c)

Solution:  

(a)   0Q(I1,I2) > I1(+)*I2(-)       (b)   0Q(I1,I2) > I1(-)*I2(+)       (c)   1Q(I1,I2) > 2*I1(+)*I2z

I1 I2
+ −

I1 I2
− +

2I1 I2z
+

Explore how to define desired states



✕

Challenge 4: 

Using the menu  Initial State > MQ(x/y ops.) > 2Q(I1,I2), create the operator 2Qx(I1,I2) and 
determine how it can be expressed as a linear combination of Cartesian product operators.

Explore how to interpret droplets



✕

Challenge 4: 

Using the menu  Initial State > MQ(x/y ops.) > 2Q(I1,I2), create the operator 2Qx(I1,I2) and 
determine how it can be expressed as a linear combination of Cartesian product operators.

Solution:  

The double-quantum x operator involving spins I1 and 
I2 corresponds to the following droplet:

Explore how to interpret droplets

Selecting in the menu Display Options > List Prod. Ops., 
the following terms will be displayed in the shorthand 
notation for Cartesian operators as shown on the right.

Hence,  “2Qx(I1,I2)” = 0.5 (2 I1x I2x) − 0.5 (2 I1y I2y) =  I1x I2x − I1y I2y.



✕

Challenge 5: 

Using the menu  Initial State > MQ(+/− ops.) > 3Q(I1,I2,I3), create the operator 2*I1(+)*I2(+)*I3(+) 
and determine how it can be expressed as a linear combination of Cartesian product operators.

Explore how to interpret droplets



✕

Challenge 5: 

Using the menu  Initial State > MQ(+/− ops.) > 3Q(I1,I2,I3), create the operator 2*I1(+)*I2(+)*I3(+) 
and determine how it can be expressed as a linear combination of Cartesian product operators.

Solution:  

Explore how to interpret droplets

Selecting in the menu Display Options > List Prod. Ops., 
the following terms will be displayed in the shorthand 
notation for Cartesian operators as shown on the right.

I1 I2  I3
+ + +

Hence,  2                =    0.5 (4I1xI2xI3x)   − 0.5 (4I1xI2yI3y)   − 0.5 (4I1yI2xI3y)   − 0.5 (4I1yI2yI3x) 
  − 0.5 i (4I1yI2yI3y) + 0.5 i (4I1yI2xI3x) + 0.5 i (4I1xI2yI3x) + 0.5 i (4I1xI2xI3y)

       =    2I1xI2xI3x    − 2I1xI2yI3y    −2 I1yI2xI3y    −2 I1yI2yI3x 
     − 2 i I1yI2yI3y + 2 i I1yI2xI3y + 2 i I1xI2yI3x + 2 i I1xI2xI3y 

I1 I2  I3
+ + +

The +3-quantum operator  2 
corresponds to the following droplet:



✕

Challenge 6: 

Suppose in the course of a pulse sequence, you have created the state I1zI2z − I1yI2y. How can 
you transfer this state into ±2 quantum coherence by a single pulse?

Pulse sequence design challenge



✕

Challenge 6: 

Suppose in the course of a pulse sequence, you have created the state I1zI2z − I1yI2y. How can 
you transfer this state into ±2 quantum coherence by a single pulse?

Solution:  

Pulse sequence design challenge

Using the menu Initial State > Edit Operator  create the operator 
I1zI2z − I1yI2y. The corresponding DROPS representation is 
indicated at the right.

The droplet representing the bilinear terms involving spins I1 and 
I2 already has the desired shape and color of ±2 quantum 
coherence, except that it is not correctly oriented! Simply rotating 
it by 90° around the y (or −y) axis will yield the correct 
orientation, i.e. a non-selective  90°y (or a 90°−y) pulse yields the 
desired ±2 quantum coherence. This can be tested by selecting  
Pulse Sequence > Rotation >90° Pulse > 90°(-y) and the 
resulting DROPS representation at the end of the pulse is shown 
on the right. (Note the rectangle at the bottom, which represents 
the pulse, where the blue color represents the pulse phase −y.)



✕

Challenge 7: 

Display the droplet corresponding to the operator 2I1xI2x + i 2I1zI2x. (When the droplet is oriented 
properly, you will see the SpinDrops logo.)

Define a new operator



✕

Challenge 7: 

Display the droplet corresponding to the operator 2I1xI2x + i 2I1zI2x. (When the droplet is oriented 
properly, you will see the SpinDrops logo.)

Solution:  

Define a new operator

Using the menu Initial State > Edit Operator, create the operator 
2I1xI2x + i 2I1zI1x. Orienting the resulting droplet in the Drops 
display such that the view direction is along the y axis yields the 
SpinDrops logo :-)



✕

Challenge 8: 

Starting from the term 2I1xI2y, find a sequences of non-selective rotations (90±x, 90±y, or 90±z) 
that creates all bilinear operators of the form 2I1aI2b with a≠b and a,b ∈ {x,y,z}.

Rotations of operators and droplets



✕

90°

Challenge 8: 

Starting from the term 2I1xI2y, find a sequences of non-selective rotations (90±x, 90±y, or 90±z) 
that creates all bilinear operators of the form 2I1aI2b with a≠b and a,b ∈ {x,y,z}.

Solution:  

Rotations of operators and droplets

2I1xI2y 2I1xI2z 2I1yI2z

2I1zI2y 2I1zI2x 2I1yI2x

x90° z

90°z 90°x

90°y

y

z

x 90°y



✕

Challenge 9: 

Determine for each of the following droplets whether it represents antiphase coherence with 
respect to the first spin (± 2I1zI2a with a ∈ {x,y}) or with respect to the second spin (± 2I1aI2z with 
a ∈ {x,y})!

Recognizing droplets of antiphase operators (A)

y

z

x



✕

Recognizing droplets of antiphase operators (A)

± 2I1aI2z

± 2I1aI2z

± 2I1zI2a ± 2I1zI2a
y

z

x

Solution:  

This challenge can be solved by simply observing the “kissing beans’ head tilt” (c.f. Help > DROPS).

± 2I1zI2a ± 2I1aI2z

“right tilt”

“right tilt” “right tilt”

“left tilt” “left tilt”

“left tilt”

Challenge 9: 

Determine for each of the following droplets whether it represents antiphase coherence with 
respect to the first spin (± 2I1zI2a with a ∈ {x,y}) or with respect to the second spin (± 2I1aI2z with 
a ∈ {x,y})!



✕

Challenge 10: 

Determine for each of the droplets the exact form of the corresponding antiphase operator!

Recognizing droplets of antiphase operators (B)

y

z

x



✕

Challenge 10: 

Determine for each of the droplets the exact form of the corresponding antiphase operator!

Recognizing droplets of antiphase operators (B)

 2I1xI2z

 2I1yI2z

  2I1zI2y   2I1zI2x
y

z

x

Solution:  

Since (based on the “kissing beans’ head tilt”) it is clear which of the two single-spin operators is 
Iz, it remains to determine whether the remaining single spin operator is Ix, Iy, I−x, or I−y. The 
exact form of the operator can be found using the right-hand rule explained in Help > DROPS.

− 2I1zI2x − 2I1xI2z

“right tilt”

“right tilt” “right tilt”

“left tilt” “left tilt”

“left tilt”



✕

Challenge 11: Verify that the following symmetry relations of anti-phase operators under 180° 
rotations are faithfully represented by the corresponding antiphase droplets!

Symmetry of antiphase operators under 180° rotations (A)

x180°
(a)   2I1xI2z −2I1xI2z

y180°
(b)   2I1xI2z  2I1xI2z

z180°
(c)   2I1xI2z −2I1xI2z

x180°
(d)   2I1yI2z 2I1yI2z

y180°
(e)   2I1yI2z −2I1yI2z

z180°
(f)   2I1yI2z −2I1yI2z



✕

y

z

x

Challenge 11: Verify that the following symmetry relations of anti-phase operators under 180° 
rotations are faithfully represented by the corresponding antiphase droplets!

Symmetry of antiphase operators under 180° rotations (A)

2I1xI2z

x180°
(a)   2I1xI2z −2I1xI2z

y180°
(b)   2I1xI2z  2I1xI2z

z180°
(c)   2I1xI2z −2I1xI2z

x180°
(d)   2I1yI2z 2I1yI2z

y180°
(e)   2I1yI2z −2I1yI2z

z180°
(f)   2I1yI2z −2I1yI2z

Solution: Applying the 180° pulses to the antiphase droplets yields the expected results. For 
example, a 180°y pulse reproduces the shape and colors of the 2I1xI2z droplet (case b), whereas 
a 180°x pulse inverts the colors (and hence the sign) of the 2I1xI2z droplet (case a).

180°(a)

− 2I1xI2z

x

2I1xI2z

180°(b)

2I1xI2z

y

2I1xI2z

180°(c)

− 2I1xI2z

z

2I1yI2z

180°(d)

2I1yI2z

x

2I1yI2z

180°(e)

− 2I1yI2z

y

2I1yI2z

180°(f)

− 2I1yI2z

z



✕

Challenge 12: 

Comparing the speed of coherence transfer

Compare the time required to transfer the initial state I1x to I2x in a homonuclear two-spin  
system when using either a sequence of delays and pulses or an isotropic mixing (TOCSY) 
sequence for a given coupling constant J12. Which sequence is faster and by how much?



✕

Challenge 12: 

Comparing the speed of coherence transfer

Compare the time required to transfer the initial state I1x to I2x in a homonuclear two-spin  
system when using either a sequence of delays and pulses or an isotropic mixing (TOCSY) 
sequence for a given coupling constant J12. Which sequence is faster and by how much?

Solution: 

t = 0 s

t = 0.5 s

I1x

I2x

I1 I2
isotropic
mixing

1/(2J12)

t = 0.5 s

t = 0.5 s

t = 0 s

t = 1 s

I1x

I2x

2I1yI2z

−2I1zI2y

I1 I2

delay
1/(2J12)

delay
1/(2J12)

90°x

For J12 = 1 Hz (and v1 = v2 = 0 Hz), 
simulations are shown for the sequence 
1/(2J12) - 90°x - 1/(2J12) (left) and for 
isotropic mixing (top). The isotropic mixing 
sequence only requires half the amount of 
time compared to the INEPT-type transfer, 
i.e. it is twice as fast.



✕

Challenge 13: 

Seeing coherence orders

(a)   2I1xI2z (b)   2I1xI2x (c)   I1xI2x - I1yI2y

Which coherence orders p are contained in the following operators?

(d)   I1xI2x + I1yI2y



✕

Challenge 13: 

Seeing coherence orders

(a)   2I1xI2z (b)   2I1xI2x (c)   I1xI2x - I1yI2y

Which coherence orders p are contained in the following operators?

(d)   I1xI2x + I1yI2y

Solution: Create the terms using the Initial State > Edit Operator menu. Choose Display 
Options > Separation > Coh. Order p to see the corresponding droplet terms separated 
based on coherence order:

(a) (b) (c) (d) p= −1, +1 p= −2, 0, +2 p= −2, +2 p= 0



✕

FAQ



✕

What do I need to do to see the effect of a pulse sequence?

DROPS Display

offsets vk
couplings J kl

The simulation requires the definition of the spin system and its parameters (offset 
frequencies and coupling constants). Also make sure the desired initial state and the 
pulse sequence are specified. Now the simulation can be started with the play button 
and the DROPS display shows the effect on the state of the spin system in real time.



✕

Tip 1: Before defining the operator, make sure the time slider is at the beginning of the selected 
pulse sequence. (In order to actually see the defined operator and not what it has evolved to 
during the pulse sequence.) A simple way to do this is to press the       button.

How can I see what a particular operator looks like?
Simply define the operator of interest in the menu  Initial State > Define Operator

Tip 2: To have more space on the screen, you can choose   Display Options > Hide Seq. Plot.

(In the menu Edit Operator, 
it is defined using the short-
hand notation “xye”.)

In this example, the operator
2I1xI2y is displayed. 

Tip 3: The triangle can be removed by setting all couplings to 0 Hz (go to Spin System > 
Parameters). To hide the parameter sliders, select Spin Systems > Hide Parameters.



✕
How can I see which product operators are represented by a 
given DROPS display?

To see the current list of product operators (yellow ellipse), select  Display Options > List 
Prod. Ops.

The Car tes ian product 
operator terms are displayed 
using the three-letter short-
hand notation (see Help > 
Tutorial).

In this example, the DROPS 
display shows “−1 zye”, 
which is the shorthand 
notation for the Cartesian 
product operator −2I1zI2y.



✕

How can I see (and modify) the current frequency offsets and 
coupling constants of the spins system?
Select  Spin System > Parameters

Tip 3: You can hide the parameter sliders selecting Spin System > Hide Parameters.
Tip 2: You can choose discrete or smooth slider steps in Display Options > Slider Steps.

Tip 1: The relative size and sign of the coupling constants is represented by the thickness and
          color (positive: white; negative: yellow) of the lines connecting the corresponding spins.

The parameter sliders and the current 
values of the parameters are displayed at 
the top right corner of the screen (yellow 
ellipse).

In this example, the offset frequencies of 
the first, the second, and the third spin are 
1 Hz, -1 Hz, and 2 Hz, respectively. 
 
The coupling constants are 
J12 = 2 Hz, J13 = 0.6 Hz, and J23 = -2 Hz.



✕

z magnetization of the first spin

x magnetization of the first spin

+1-quantum coherence of the first spin

z magnetization of the first, the second, and the third spin

Multiple-quantum operators with quantum order (+p) AND (-p) based on 
real combination of Cartesian product operators

Multiple-quantum operators with quantum order (+p) OR (-p) based on 
raising and lowering operators

The traceless part of the singlet state involving the first and second spin

This option makes it possible to edit the chosen initial density operator and 
hence to generate any desired operator of interest

How do I choose the initial state of the spin system?
In the menu Initial State,  a selection of initial states of interest is presented. In a typical 
experiments, you may be interested to start e.g. with z magnetization of the first spin of of 
all spins. Examples of operator you can select are given on the following pages.



✕

Examples of States and Droplets of a Single Spin

+1-quantum coherence  I1x + i I1y

−1-quantum coherence  I1x − i I1y

“z magnetization”  I1z

“x magnetization”  I1x

“y magnetization”  I1y



✕

Examples of  Zero-Quantum Coherences Involving Two Spins

zero-quantum x coherence
I1xI2x + I1yI2y

zero-quantum y coherence
I1yI2x − I1xI2y

I1 I2
+ −

I1 I2
− +



✕

Examples of Single-Quantum Coherences Involving Two Spins

antiphase x coherence 2I1xI2z

antiphase y coherence 2I1yI2z

2I1 I2z
+

2I1 I2z
−

+1 quantum antiphase coherence

−1 quantum antiphase coherence



✕

Examples of Double-Quantum Coherences Involving Two Spins

double-quantum x coherence
I1xI2x − I1yI2y

double-quantum y coherence
I1yI2x + I1xI2y

I1 I2
+ +

I1 I2
− −

(+2)-quantum coherence

(−2)-quantum coherence



✕

2I1xI2x

2I1yI2y

2I1zI2z

2I1xI2x + 2I1yI2y + 2I1zI2z

Additional Examples of Bilinear Operators Involving Two Spins



✕

How Can I Take a Screenshot of my DROPS  Display?

A screen shot of the iPad or iPhone can be made by simultaneous clicking the home and 
power buttons. 

home button

power button

The screenshot will be saved in the Camera Roll. To see the screen shot, use the standard  
“Photos” app on the home screen.



✕

Mathematical
Background



✕

Mathematical Background of the DROPS Visualization

In order to use the DROPS representation to visualize e.g. the state of a coupled spin system, 
it is not necessary to understand the mathematical details of the mapping between quantum-
mechanical operators and their DROPS representation. (Similarly, in order to use the well-
known vector picture to visualize the state of uncoupled spins, it is not necessary to 
understand the mathematical details of the mapping between quantum-mechanical operators 
for two-level systems and their vector representation via the expectation values of the spin 
operators Ix, Iy, and Iz etc.).

Still, in may be interesting to learn more about the mathematical background of this mapping 
and the connection to Wigner representations. In the following, we summarize some of the 
underlying ideas. For more details, we refer to the manuscript "Visualizing states and 
operators of coupled spins systems“ by A. Garon et al (2015) and to A. Garon’s thesis „On a 
new visualization tool for quantum systems and on a time-optimal control problem for 
quantum gates“ (see Help > References).



✕

Wigner Functions of Single Spins

For a system consisting only of a single spin (not necessarily spins 1/2), it is always possible 
to express an operator (such as the density operator encoding the state of the spin) as a 
linear combination of tensor operators Tjm with (in general complex) coefficients cjm. By using 
the natural mapping between tensor operators Tjm and spherical harmonics Yjm, is it possible 
to represent any operator A by a function f on a sphere, which can have complex values and 
which can be plotted as a three-dimensional shape: for a given point s of the unit sphere, the 
complex number f(s) can be written as  r(s) eiφ(s) and it can be represented by a point with 
distance r(s) from the origin and a color to represent the phase φ(s) (see Help > Color Code). 
If the operator A is a density operator, the function f is called a Wigner function.

A f

Tjmc jmΣ Yjmc jmΣ

operatormatrix function shape

���	



✕

DROPS Display and Wigner Representation of Coupled Spins
For systems consisting of coupled spins, an operator A can still be expressed as a linear 
combination of tensor operators. However, in this case, different tensor operators with the 
same rank j exist, which would make the correspondence not one-to-one if they would be 
mapped to the same spherical harmonic Yjm. This problem can be circumvented by grouping 
the tensor operators into discrete sets (labelledl), where tensor operators with rank j appear 
not more than once in each set l. As the tensor operators form a complete basis, any 
operator A can then also be decomposed in components that correspond to these discrete 
sets l of  tensor operators:

l
A=  Σ  A(l)

In analogy to the case of single spins, each 
component A(l) can be mapped to a function f (l) 

on a sphere and represented by a corresponding 
colored shape (see next page). 

This is the basic idea of the DROPS representation 
of operators (where the acronym DROPS stands for 
Discrete Representation of spin OPeratorS) and the 
individual shapes are called droplets. If the operator 
A is the density operator, the corresponding set of 
functions f (l) forms a generalized Wigner represen-
tation.



✕

Mapping of Operator Components A(l) to Individual Droplets

If an operator A is decomposed as described above in the form                                 then 

each of the operator components A(l) can be represented by a function f (l) on a sphere by
 

mapping tensor operators Tjm to spherical harmonics Yjm as in the case of single spins:

A f

Tjmc jmΣ Yjmc jmΣ

���	

set of 
operatorsmatrix set of

functions
set of 

droplets

l
A=  Σ  A(l),

(l) (l)

(l) (l)



✕

LISA Basis

The grouping of tensor operators Tj into discrete sets l (where a tensor operatorsTj with rank 
j appears not more than once in each set) is not unique. Depending on the application, 
different approaches may be preferable. For applications with distinguishable spins, the so-
called LISA basis (Garon et al., 2015) has a number of very favorable properties and provides 
an intuitive DROPS visualization to represent NMR experiments graphically. It groups tensor 
operators based on Linearity, Subsystems and Auxiliary criteria, such as permutation 
symmetry (see next page). These criteria lead to a unique grouping, which defines the tensor 
operators up to their algebraic signs. In the standard LISA basis, the signs are chosen such 
as to result in intuitive shapes (Garon et al., 2015). In the SpinDrops app, the LISA basis is 
used by default.



✕

Tensor Grouping in the LISA basis (A)
In the standard LISA basis, the following criteria are used for the grouping of tensor operators 
into discrete sets l such that each set contains not more than one tensor of the same rank j.

Linearity

The first criterion for the grouping of tensors is the number k of involved spins, which is also 
called the linearity of an operator. For three-spin systems, the linearity k can be 0, 1, 2, or 3.
Except for k=0, the resulting groups still contain several tensors with the same rank j.

Subsystems

The second criterion is based on the subset K of spins that are involved in a tensor operator.  
In a system consisting of three spins, the subsets are {I1}, {I2}, and {I3} for linear operators 
(k=1), {I1,I2}, {I1,I3}, and {I2,I3} for bilinear operators (k=2) and for each of these subsystems, 
not more than one tensor exists with the same rank j. However, this is not the case for the 
trilinear operators, i.e. for trilinear tensors involving all spins {I1, I2, I3}.

Auxiliary Criteria

For k>2, auxiliary criteria are needed in order to define unique groupings of tensors.  In the 
LISA basis, the next criterion for the grouping of tensors is based on permutation symmetry. 
For systems of up to five spins, this provides a unique and physically motivated grouping, 
such that all tensors within each group have different ranks j. 



✕

Tensor Grouping in the LISA basis (B)
The grouping of tensors discussed on the previous page is schematically summarized below. 
For each linearity k and subsystem K, the rank j of the existing tensor operators is indicated. For 
the trilinear terms (k=3), also the permutation symmetry is indicated (in terms of so-called Young 
Tableaux, see Garon et al., 2015), which is used an auxiliary criterion to define sets of tensors 
in which all ranks j are different. The table also indicates the labels l of the resulting unique sets 
of tensor operators and of the corresponding droplets in the DROPS representation.

Linearity
k

Subsystem Permutation 
Symmetry

Label of each set
l

Rank
j

0 ∅ 0 Id

1 1

τ1{I1,I2,I3}

{I1} I1
1{I2} I2
1{I3} I3

2 2,1,0{I1,I2} {I1,I2}
2,1,0{I1,I3} {I1,I3}
2,1,0{I2,I3} {I2,I3}

3 3, τ1
τ22,2, τ2
τ3 τ3
τ4 τ4

1,1,1,
0



✕

Tensor Grouping in the LISA basis (C)

The trilinear operators corresponding to the sets τ1, τ2, τ3, and τ4 have characteristic 
symmetries with respect to permutations of spin labels. As illustrated schematically below, the 
tensor operators in set τ1 are symmetric (s) with respect to any pairwise exchange of spin 
labels, i.e. any exchange of spin labels leaves these operators invariant. Conversely, the 
operators in set τ4 are anti-symmetric (a) with respect to any pairwise exchange of spin labels, 
i.e. any exchange of spin labels changes the sign of these operators. The tensor operators in 
set τ2 are symmetric (s) only with respect to the exchange of spin labels 1 and 2, whereas the 
tensor operators in set τ3 are anti-symmetric (a) with respect to the exchange of spin labels 1 
and 2.

s

1 2

3

s

s s1 2

3

a1 2

3

a

a a

1 2

3

τ1 τ2 τ3 τ4

This is illustrated on the following page for the decomposition of the operator 4I1xI2yI3z.



✕

Tensor Grouping in the LISA basis (D)
The symmetry of the droplets τ1, τ2, τ3, and τ4 with respect to a permutation of spin labels is 
illustrated for the operator 4I1xI2yI3z (a). Permuting spins 1 and 2 results in the operator 
4I2xI1yI3z = 4I1yI2xI3z (b) and as expected, the droplets τ1 and τ2, which are symmetric under 
the (1,2) permutation, are unchanged. In contrast, the droplets τ3 and τ4, which are anti-
symmetric with regard to this operation, change sign (resulting in inverted colors). The (1,3) 
permutation results in the operator 4I3xI2yI1z = 4I1zI2yI3x (c)  and the (2,3) permutation results in 
the operator 4I1xI3yI2z = 4I1xI2zI3y (d). As discussed on the previous page, droplet τ1 is also 
symmetric with respect to these permutations and is identical to case (a). Droplet τ4 is anti-
symmetric with respect to these permutations, resulting in a color change from red to green.

 (a) 4I1xI2yI3z (b) 4I1yI2xI3z (c) 4I1zI2xI3x (d) 4I1xI2zI3y

τ1

τ2

τ3

τ4

τ1

τ2

τ3

τ4

τ1

τ2

τ3

τ4

τ1

τ2

τ3

τ4



✕

Coherence Order (A)

An operator A has a well-defined coherence order p if a rotation around the z axis by an 
arbitrary angle α reproduces the operator A up to an additional phase factor exp(−ipα), i.e. if

A Ae−ipα
rotation by angle α  

around z axis

Similarly, a droplet representing a function f (l)
 corresponds to an operator term A(l) with 

well-defined coherence order p, if a rotation around the z axis by an arbitrary angle α 
reproduces the droplet up to an additional phase factor exp(−ipα). For simplicity, in the 
following we drop the superscript “(l)”. For example, let us consider the rotation of the 
following droplet with p=+1 by π/2 (i.e. 90°) around the z axis:

rotation by angle α=π/2  
around z axis

f(s) = r(s) eiφ(s) f’(s) = e−ipα f(s) = r(s) eiφ’(s)

with φ’(s) = φ(s) −pα = φ(s)−π/2



✕

Coherence Order (B)
For a droplet with coherence order p, the corresponding function f(s) = r(s) eiφ(s)  is 
transformed by a z rotation with an angle α to  f’(s) = r(s) eiφ’(s)  with  φ’(s) = φ(s) −pα. 

In order to illustrate this point, consider the example shown on the previous page with p=+1 
and α=π/2.

π/2

After the rotation, the shape of the droplet is the same but the color (representing the phase of 
the function f ) has changed. For example, the color of the point indicated by the small white 
circle has changed from red (corresponding to φ = 0) to blue (corresponding to φ’=−π/2), 
which is exactly what is expected from the general formula φ’(s) = φ(s) −pα = 0 − (+1) π/2 
given above.

rotation by angle α=π/2  
around z axis



✕

Glossary of Terms 
and Acronyms



✕

Basis Operator: Just as a vector can be expressed as a unique combination of orthogonal basis 
vectors, any operator can be expressed as a unique combination of orthogonal basis operators. 
In NMR, the most widely used basis operators are Cartesian Product Operators and Spherical 
Tensor Operators. 

Cartesian Product Operators: Products of individual spin opertators Ikx, Iky, Ikz, where k is the 
spin label. In a three-spin system, examples of Cartesian product operators are I1x,  I2z,  I3y,  
2I1yI2z, or 4I1zI2zI3x. (The prefactors 2 and 4 of the bilinear and trilinear Cartesian product 
operators ensure that all terms have the same norm.)

Glossary of Terms and Acronyms (A)

This is a summary of terms and acronyms used in SpinDrops and in the accompanying tutorial 
and help files. For an introduction to basic NMR concepts related to the dynamics of coupled spin 
systems, we refer to excellent books by Keeler (Understanding Understanding NMR 
Spectroscopy), Cavanagh, Fairbrother, Palmer, Skelton, Rance (Protein NMR Spectroscopy, 
Principles and Practice), Levitt (Spin Dynamics: Basics of Nuclear Magnetic Resonance), Ernst, 
Bodenhausen, Wokaun (Principles of Nuclear Magnetic Resonance in One and Two Dimenisons) 
or Goldman (Quantum Description of High-Resolution NMR in Liquids). For more information 
concerning concepts related to the DROPS representation, see Garon et al. (2015) and 
references cited therein.



✕

Complex Numbers: Recall that a complex number c = a + ib can be expressed in terms of its 
real and imaginary parts a and b, but also in terms of their amplitude r and phase φ, where 
r2=a2+b2 and tanφ=b/a. The amplitude r corresponds to the distance of the complex number from 
the origin of the complex plane. For a given phase φ, the corresponding phase factor is given by 
the complex number cos(φ)+i sin(φ)=exp(iφ), which has an amplitude of 1 and is located on the 
unit circle in the complex plane.

DEPT (Distortionless Enhancement of Polarization Transfer) is a technique for heteronuclear 
polarization transfer and spectral editing.

Density Operator: The operator describes the state of a spin system. More precisely, it encodes 
the information about the state of an ensemble of spin systems and allows us to calculate 
experimentally relevant expectation values of observables, such as the detectable transverse 
magnetization of spins.

DROPS stands for Discrete Representation of spin OPeratorS. This is a general approach to 
visualize abstract quantum mechanical operators of coupled spin systems (Garon et al., 2015).

Droplet: In the DROPS representation, operators are mapped to a set of complex functions on a 
sphere. Each of these function is plotted at a different location. The shape and color of each 
droplet represent the orientation-dependent amplitude and phase of the complex function, 
respectively.

E represents the identity operator.

Glossary of Terms and Acronyms (B)



✕

Hamilton Operator (or Hamiltonian): The quantum mechanical operator that corresponds to the 
energy of a spin system. It includes terms for frequency offsets, couplings and pulses.

Hermitian Operator (Self-Adjoint Operator): Hermitian operators play an important role in 
quantum mechanics as they have real eigenvalues and expectation values. Observables 
correspond to Hermitian operators. Cartesian product operators are Hermitian. Any Hermitian 
operator can be expressed as a linear combination of Cartesian product operators with real 
coefficients. The multiplication of a Hermitian operator by i results in a skew-Hermitian operator.
 
I1, I2, I3 denote the first (I1), second (I2), and third (I3) spin in a spin system.

INEPT stands for Insensitive Nuclei Enhanced by Polarization Transfer

Linearity: The linearity of an operator reflects the number of involved single-spin operators.  For 
example,  I1x, 2I1xI2y and 4I1xI2zI3y are linear, bilinear and trilinear operators, respectively.

LISA: A tensor basis which is defined based on Linearity, Subsystems and Auxiliary criteria. In 
addition to the number of involved spins (linearity) and  the subset of involved spins (subsystem), 
permutation symmetry provides a sufficient auxiliary criterion to uniquely define the tensor basis 
(up to algebraic signs) for systems consisting of up to five spins 1/2. Additional criteria are 
necessary for more than five spins. For a rigorous definition, see Garon et al. (2015).
and auxiliary criteria, such as permutation symmetry)

Glossary of Terms and Acronyms (C)



✕

Phase: The term phase typically refers to the argument of a periodic function. This term can be 
somewhat confusing because it appears in different contexts in NMR, where it is associated with 
different properties.
In the context of pulses, the phase corresponds to the transverse rotation axis in the rotating 
frame. It can be defined in terms of the angle between the x axis and the rotation axis (in units of 
degree, e.g. 90° or in units of radians, e.g. π/2) or by the rotation axis itself (e.g. y).
In the context of complex numbers, the phase refers to the angle between the real axis and the 
line between the origin and the location of a given complex number in the complex plane. 
The relation between z rotations and phase factors of operators plays an important role in the 
definition of coherence order. In the DROPS representation, individual droplets represent 
complex functions on a sphere, where the orientation-dependent phase of each complex function 
is represented graphically by colors.

Tensor Operators: An irreducible spherical tensor Tj with rank j has 2j+1 components Tjm with 
order m ∈ {−j, … , j }. The operators Tjm form a basis of a space which stays invariant under 
rotations. In the Condon-Shortley phase convention, only the operators Tj0 (with order 0) are 
Hermitian. Tensor operators form an ideal basis for the DROPS representation because of their 
favorable properties under non-selective rotations and their close relationship with spherical 
harmonics Yjm.

Glossary of Terms and Acronyms (D)



✕

TOCSY (Total Correlation Spectroscopy) is based on the efficient transfer of polarization or 
coherence between coupled spins under isotropic mixing conditions. Isotropic mixing conditions 
can be created by TOCSY multiple-pulse sequences. In homonuclear spin systems, the effective 
coupling constants of the isotropic mixing Hamiltonian are ideally identical to the actual couplings 
between the spins. For the simple case of two coupled spins 1/2, polarization or coherence  can 
be transferred from one spin to the other spin, resulting in cross peaks in two-dimensional 
TOCSY experiments. The optimal mixing time is t=1/(J12). For systems consisting of more than 
two spins 1/2, polarization and coherence is transferred between all spins of a coupling network, 
resulting in „total correlation“ spectra. (Isotropic mixing conditions can also be created in 
heteronuclear spin systems, but the effective coupling constants of the isotropic mixing 
Hamiltonian are scaled down to 1/3 of the actual couplings between the spins).

Glossary of Terms and Acronyms (E)
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✕

How to Reference SpinDrops in Publications

You can refer to SpinDrops in publications similarly as you would reference a book:

Authors: Niklas J. Glaser, Michael Tesch and Steffen J. Glaser
Title: SpinDrops
Edition: Version 1.2.2
Address: Garching, Germany
Date of publication: 2015
Retrieved from: http://itunes.apple.com

A sample citation:

N. J. Glaser, M. Tesch and S. J. Glaser, SpinDrops (Version 1.2.2) [Mobile application 
software], retrieved from http://itunes.apple.com (2015).



✕

Feedback



✕

Feedback

If you like the app, please tell your friends, don’t forget to rate it on the App Store and send 
your comments, suggestions, feedback and/or support to

   drops@glasersystems.de

Please also send us interesting, instructive, cool or funny SpinDrops screen shots (ideally with 
a title and a description how you created the submitted pictures). If you agree, your 
contributions will be published in the DROPS Gallery at 

      www.GlaserSystems.de

Please indicate whether or not it is OK to publish your name and location with your 
contributions.


